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ABSTRACT
Despite advances in machine learning and deep neural net-
works, there is still a huge gap between machine and human
image understanding. One of the causes is the annotation
process used to label training images. In most image catego-
rization tasks, there is a fundamental ambiguity between some
image categories and the underlying class probability differs
from very obvious cases to ambiguous ones. However, current
machine learning systems and applications usually work with
discrete annotation processes and the training labels do not
reflect this ambiguity. To address this issue, we propose an
new image annotation framework where labeling incorporates
human gaze behavior. In this framework, gaze behavior is
used to predict image labeling difficulty. The image classifier
is then trained with sample weights defined by the predicted
difficulty. We demonstrate our approach’s effectiveness on
four-class image classification tasks.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); •Computing methodologies → Computer vi-
sion;
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INTRODUCTION
Machine learning-based computer vision methods have been
growing rapidly and the state-of-the-art algorithms even out-
perform humans at some image recognition tasks [9, 10]. How-
ever, their performance is still lower than humans’ when the
training data is limited or the task is complex [1]. Further, the
errors that machines make are often different from the ones
humans make [12].

One approach to overcome this difficulty is to incorporate
humans in the loop via human-computer interaction [4, 6, 7].
Some prior examples include using human brain activities to
infer perceptual class ambiguities in image recognition and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UIST ’18 Adjunct October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5949-8/18/10.

DOI: https://doi.org/10.1145/3266037.3266090

Perceptual

Class Ambiguity

Gaze and Mouse 

Features

Image Features Image SVM

Gaze SVM

Figure 1. Overview of the proposed method. The first gaze SVM is
trained using gaze and mouse features during image annotation and the
second image SVM is trained so that it behaves similarly to the gaze
SVM and reflects the perceptual class ambiguity for humans.

assigning difficulty-based sample weights to the training im-
ages [8, 15]. However, while gaze is also known to reflect
internal states of humans, is much cheaper to measure than
brain activity, and has been used as a cue to infer user proper-
ties related to visual perception [3, 14, 16, 17], there has not
been much research on using gaze data for guiding machine
learning processes.

This work proposes an approach for gaze guided an image
classification that better reflects the class ambiguities in human
perception. An overview is given in Fig. 1. First, we collect
gaze and mouse interaction data when participants work on a
visual search and annotation task. We train a support vector
machine (SVM) [2] using features extracted from these gaze
and mouse data and use its decision function to infer perceptual
class ambiguities when assigning the target image classes. The
ambiguity scores are used to assign sample weights for training
a second SVM with image features. This results in an image
classifier that behaves similarly to the gaze-based classifier.

GAZE-GUIDED IMAGE RECOGNITION
The basic idea of our method is that the behavior of the image
annotator reflects the difficulty of assigning class labels. Gaze
behavior on annotated images is more distinctive if the image
clearly belongs to the target or non-target classes, while it
becomes more indistinctive on ambiguous cases. Therefore,
the decision function of an SVM classifier trained on gaze
and mouse features can be used to estimate the underlying
perceptual class ambiguity of the training images.

Our method uses gaze data recorded during a visual search and
annotation task on an image dataset with pre-defined image
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Figure 2. (a) Data collection setup. (b) Example of images displayed in
the annotation task.

Table 1. Gaze and mouse features. Median and variance were computed
across all participants.

Gaze
Fixation count Median / Variance
Total fixation duration Median / Variance
Timestamp of the first fixation Median / Variance

Mouse

Mouseover count Median / Variance
Total mouseover duration Median / Variance
Timestamp of the first mouseover Median / Variance
Timestamp of the first click Median / Variance
Proportion of participants who clicked

categories. Figure 2 shows the setup for the data collection
process. In our experiments, we prepared image datasets that
consist of four different categories and sequentially showed
subsets of 60 images as shown in Fig. 2 (b). Participants
were instructed about the four classes beforehand and asked
to search for and click 15 images corresponding to one target
class out of the four classes within a time limit of 45 seconds.
We recorded locations of fixation, mouse cursor and associated
timestamps1. For each image, we extracted 15 types of gaze
and mouse features listed in Table 1. We obtained the median
and the variance from the data of all participants.

The gaze and mouse features were then used to estimate the
perceptual ambiguity of target labels. We first train an SVM to
classify the four image categories with only gaze and mouse
features. The distance from the decision boundary to each sam-
ple approximately represents the ease of category prediction.
We converted the distance to the perceptual class ambiguity
score c through a sigmoid function. The score is designed
to be small when the sample is misclassified or close to the
decision boundary and large when the sample is classified
correctly and far from the decision boundary.

The image classifier SVM was trained using a weighted loss
function instead of the standard hinge loss function. In the
weighted loss function, the loss of the i-th image is 1+ci times
the hinge loss, where ci is the perceptual class ambiguity score
of the i-th image. The weighted function assigns a larger loss
in proportion to the perceptual class ambiguity estimated from
the gaze and mouse behavior, and gives more misclassification
penalty to images that are easy for humans to assign target
labels.

EXPERIMENTAL RESULTS
We compared the performance of our approach with a stan-
dard hinge-loss SVM. We picked four visually similar ob-
ject classes (dolphin, whale, killer whale, shark) from the
ImageNet dataset [5] and four similar scene classes (corn

1We used a Tobii Pro X3-120 eye tracker in the experiments.
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Figure 3. The classification accuracy of SVMs for the object (left) and
scene (right) datasets.

(a) Improved cases (b) Failed cases
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Figure 4. Examples whose classification result has changed through our
approach. Texts indicate their ground-truth labels.

field, golf course, pasture, rice paddy) from the Places205
dataset [18].

Each of the four object/scene classes contains 600 training
images and 150 test images. A total of 9 male and 1 female
university students (22-24 years old) participated in the anno-
tation task on training images. Image features were extracted
from the middle convolutional layer of the AlexNet [11] pre-
trained on ILSVRC2012 dataset [13]. Hyperparameter C of
the SVM was optimized via 10-fold cross validation on the
training data and γ of the RBF kernel was set to 1/600.

Figure 3 shows the classification accuracies on each dataset.
Our proposed method yields performance improvements es-
pecially on the object dataset. In the case of dolphin, our
approach results in a significant performance improvement
(p < 0.01, Wilcoxon signed-rank test). Furthermore, Fig. 4
shows some example images whose estimated labels changed
with our proposed method. While our proposed method could
make correct predictions on obvious cases, it also made false
predictions on ambiguous cases reflecting the perceptual class
ambiguity for humans.

CONCLUSION
This work explored a gaze-guided image classification ap-
proach that incorporates perceptual class ambiguities. Al-
though overall improvements on classification accuracy were
relatively marginal, experimental results showed promise that
our approach can influence classification algorithm to reflect
the underlying ambiguity of image categories. It is expected
that the proposed approach will have a larger impact on more
challenging classification tasks, possibly with highly subjec-
tive labels.
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