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Abstract—We present a method that enhances the performance
of depth-from-defocus (DFD) through the use of shading infor-
mation. DFD suffers from important limitations – namely coarse
shape reconstruction and poor accuracy on textureless surfaces –
that can be overcome with the help of shading. We integrate both
forms of data within a Bayesian framework that capitalizes on
their relative strengths. Shading data, however, is challenging
to recover accurately from surfaces that contain texture. To
address this issue, we propose an iterative technique that utilizes
depth information to improve shading estimation, which in turn
is used to elevate depth estimation in the presence of textures.
The shading estimation can be performed in general scenes with
unknown illumination using an approximate estimate of scene
lighting. With this approach, we demonstrate improvements over
existing DFD techniques, as well as effective shape reconstruction
of textureless surfaces.

Index Terms—Depth-from-defocus, shape-from-shading, illu-
mination estimation.

I. INTRODUCTION

Depth-from-defocus (DFD) is a widely-used 3D reconstruc-
tion technique that utilizes the relationship between depth,
focal settings, and image blur to estimate a range map. A pair
of images is typically acquired with different focal settings,
and the differences between their local blur levels are then used
to infer the depth of each scene point. Compared to other 3D
reconstruction techniques such as 3D scanning, stereo vision,
and photometric stereo, DFD has certain practical advantages.
One is that it requires only a single camera, making DFD a
convenient option for image capture. By contrast, 3D scanning
requires a range sensor; stereo vision needs a pair of cameras
placed at suitable vantage points; and photometric stereo
requires controllable illumination in addition to a camera.
Another advantage is that unlike active sensing techniques
such as 3D scanning and photometric stereo, DFD does not
require direct interaction with the scene. This makes DFD
useful for scenes with bright illumination, e.g. outdoor scenes,
where active control of the lighting environment becomes
difficult, and for scenes which might be damaged by the
projected light or lasers of certain range sensors.

With the rising popularity of large format lenses for high
resolution imaging, DFD may increase in application due to
the shallow depth of field of such lenses. However, there exist
imaging and scene factors that limit the estimation accuracy
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of DFD. Among these is the limited size of lens apertures,
which leads to coarse depth resolution. In addition, depth
estimates can be severely degraded in areas with insufficient
scene texture for measuring local blur levels.

We present in this paper a technique that aims to mitigate
the aforementioned drawbacks of DFD through the use of
shading information. In contrast to defocus blur, shading not
only indicates the general shape of a surface, but also reveals
high-frequency shape variations that allow shape-from-shading
(SFS) methods to match or exceed the level of detail obtainable
by active sensing [1], [2]. We therefore seek to capitalize
on shading data to refine and correct the coarse depth maps
obtained from DFD. The utilization of shading in conjunction
with DFD, however, poses a significant challenge in that
the scene texture generally needed for DFD interferes with
the operation of shape-from-shading, which required surfaces
to be free of albedo variations. Moreover, DFD and SFS
may produce incongruous depth estimates that need to be
reconciled.

To address these problems, we first propose a Bayesian
formulation of DFD that incorporates shading constraints
in a manner that locally emphasizes shading cues in areas
where there are ambiguities in DFD. To enable the use of
shading constraints in textured scenes, this Bayesian DFD
was combined in an iterative framework with a depth-guided
intrinsic image decomposition that aims to separate shading
from texture. These two components mutually benefit each
other in the iterative framework, as better depth estimates lead
to improvements in depth-guided decomposition, while more
accurate shading/texture decomposition amends the shading
constraints and thus results in better depth estimates. Our
experiments demonstrate that the performance of Bayesian
DFD with shading constraints surpasses that of existing DFD
techniques over both coarse and fine scales. In addition, the
use of shading information allows our Bayesian DFD to work
effectively even for the case of untextured surfaces.

In this paper, we advance a preliminary version of this work
[3] with the following extensions, which significantly increase
its utility:
• Our prior work [3] requires measurement of the illumina-

tion environment, such as by imaging a calibration sphere,
to establish shading constraints on the scene geometry.
This requirement limits the application of the technique
to cases where such input is available. To remove this
restriction, we extend our framework to infer approximate
scene illumination using coarse geometry from DFD
and an estimated relative albedo graph. With this new
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framework, our method can be more generally applied to
settings with unknown illumination.

• The previous version of this work employs a max-product
variant of belief propagation to optimize the proposed
Bayesian model. Although this belief propagation yields
a global optimum, it is not only slow due to its global
search, but also generates discrete value estimates of
depth that may result in obvious quantization effects. To
address these issues, we propose a nonlinear optimization
that uses a spline approximation to the DFD energy term.
This new optimization increases the overall processing
speed by over 10 times without reducing the quality of
results. Moreover, this continuous optimization avoids the
depth quantization effects sometimes exhibited with the
prior method.

• In [3], results are presented only for images captured
in laboratory settings with calibrated illumination. To
this, we add results for natural settings without mea-
sured illumination environments. The experiments show
that greater shape detail is reconstructed by our method
compared to a standard DFD algorithm.

II. RELATED WORK

In this section, we describe the most relevant previous work
from the areas of depth-from-defocus, shape-from-shading,
and intrinsic image decomposition.

A. Depth-from-defocus

There exists a substantial amount of literature on DFD
that addresses this problem with different approaches in terms
of defocus operator models, prior knowledge on scenes, and
problem formulations.

A common defocus operator is the convolutional image
formation model [4], [5], [6], [7], typically employed with
a Gaussian kernel. [8] proposed a spatial-domain convolu-
tion/deconvolution transform which formulates the convolution
model independent of any particular kernel. [9] modeled the
defocus operator as a matrix-based operation and deconvolved
the defocus operator by characterizing the problem as a large
system of linear equations. [10] observed that the defocused
image lies in the null space of certain linear operators which
depend on scene depth and camera optics. These operators
are learned by singular value decomposition on synthesized
training data. The depth can be estimated in real time by
projecting the input images into each learned null space. Dif-
ferent from the inverse filtering formulation, [11] modeled the
defocus operation as a diffusion process and mathematically
represented it by the heat equation.

Besides addressing different defocus models, prior knowl-
edge about the scenes has also been incorporated as an
additional constraint. Earlier works handle objects whose
brightness consists of step edges [4], [12], [5], [13]. Since
the in-focus intensity profile of these edges is known, their
depth can be determined from the edge blur. Later methods
have instead assumed that object surfaces can be locally
approximated by a plane parallel to the sensor [14], [8], [15],
called the equifocal assumption, effectively disregarding local

depth variations in the estimation. [16] used additional stereo
matching information as prior scene information. Different
from these simplifications of the image formation model, our
work employs physically-based prior knowledge on shading
that is estimated via a shape-from-shading process. In con-
trast to the sharp edge and equifocal assumptions, shading
constraints not only can serve as a regularization term, but
also provides detailed geometric information about surfaces.

Among different problem formulations, deterministic ap-
proaches [9], [4], [5], [8], [10] estimate a depth map directly
without an optimization process. Alternatively, DFD has been
formulated as a Markov random field (MRF) problem, which
allows inclusion of constraints among neighboring points [17],
[7], [16].

B. Shape-from-shading

Considerable work has also been done on shape-from-
shading. We refer the reader to the SFS surveys in [18], [19],
and review only the most relevant methods here.

SFS has traditionally been applied under restrictive settings
(e.g., Lambertian surfaces, uniform albedo, directional light-
ing, orthographic projection), and several works have aimed
to broaden its applicability. [20] addressed both orthographic
and perspective projection based upon the notion of viscosity
solutions of Hamilton-Jacobi equations. Natural illumination
with Lambertian reflectance is addressed in [1], [21]. [1]
demonstrates that many natural lighting environments have
sufficient variability to constrain local shape. The method
of [22] deals with natural illumination with non-Lambertian
reflectance, where reflectance parameters and surface normals
are jointly estimated in a probabilistic formulation. Isotropic
reflectance with uncalibrated illumination is addressed in [23],
[24], based on the observation that for general isotropic
materials, the geodesic distance between intensity profiles is
linearly related to the angular difference between their surface
normals, and that the intensity distribution of an intensity pro-
file conveys information about the reflectance properties. Non-
uniform albedo has been particularly challenging to overcome,
and this problem has been approached using smoothness and
entropy priors on reflectance [25]. Shape-from-shading has
also been used to refine the depth data of uniform-albedo
objects obtained by multi-view stereo [2].

Unlike previous work, ours instead takes advantage of de-
focus information to improve estimation for textured surfaces,
and uses SFS in the context of DFD with scenes containing
albedo variations.

C. Intrinsic image decomposition

Intrinsic image decomposition aims to separate an image
into its reflectance and shading components. This is an ill-
posed problem, since there are twice as many unknowns
(reflectance, shading) as observations (image intensities) per
pixel. The various approaches that have been employed make
this problem tractable through the inclusion of additional
constraints, such as those derived from Retinex theory [26],
trained classifiers [27], and multiple images under different
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lighting conditions [28]. Despite the existence of these differ-
ent decomposition cues, the performance of intrinsic image
algorithms has in general been rather limited [29].

Recently, range data has been exploited to provide strong
constraints for decomposition, and this has led to state-of-the-
art results [30]. [30] proposed two new types of decomposition
constraints (shading constraints and temporal constraints) de-
rived from the multiple viewpoints and reconstructed 3D scene
geometry of the video data. Inspired by this work, we also
utilize depth information to aid intrinsic image decomposition.
However, our setting is considerably more challenging, since
the depth information we start with is very rough, due to the
coarse depth estimates of DFD and the problems of SFS when
textures are present.

III. APPROACH

In this section, we present our method for Bayesian DFD
with shading constraints (DFDS). We begin with a review
of basic DFD principles, followed by a description of our
Bayesian DFD model, our shading-based prior term, the
method for handling surface textures, illumination estimation
for non-calibrated scenes, and finally the iterative algorithm
that integrates all of these components.

Similar to previous DFD algorithms, our approach uses
two images {I1, I2} captured at a fixed camera position
with different focal settings as input. Since changing focal
settings leads to different magnifications among the defocused
images, we use Microsoft Research’s Image Composite Editor
(ICE) [31] to automatically align these two images. Mean-
while, the most in-focus parts of the two images are combined
into a single image Îf by focus stacking [32], a technique
which expands the depth of field by fusing differently focused
images based on relative local sharpness. The focus stacking is
also computed using ICE. This approximate in-focused image
Îf will be used for surface normal estimation by shading-
from-shading in Sec. III-C, intrinsic image decomposition
in Sec. III-D, and illumination estimation for uncalibrated
scenes in Sec. III-E. In cases where the illumination of a scene
is calibrated, we use a white Lambertian sphere placed in the
scene as done in [1].

A. Basic principles of DFD

DFD utilizes a pair of images taken with different focal
settings. The effects of these focal settings on defocus blur
will be described in terms of the quantities shown in Fig. 1.
Let us consider a scene point P located at a distance d from
the camera lens. The light rays radiated from P to the camera
are focused by the lens to a point Q according to the thin lens
equation:

1

d
+

1

vd
=

1

F
, (1)

where vd is the distance of Q from the lens, and F is the
focal length. When the focal setting v, which represents the
distance between the lens and sensor plane, is equal to vd, the
rays of P converge onto a single point on the sensor, and P
is thus in focus in the image. However, if v 6= vd, the focused
point Q does not lie on the sensor plane, and P then appears

Fig. 1. Imaging model used in depth-from-defocus.

blurred because its light is distributed to different points on
the sensor. Because of the rotational symmetry of lenses, this
blur is generally in the form of a circle. The radius b of this
blur circle can be geometrically derived as

b =
Rv

2

∣∣∣∣ 1

F
− 1

v
− 1

d

∣∣∣∣ , (2)

where R is the radius of the lens.1 As seen from this equation,
there is a direct relationship between depth d and blur radius
b for a given set of camera parameters.

The light intensity of P within the blur circle can be
expressed as a distribution function known as the point spread
function (PSF), which we denote by h. Following [4], [6], we
model the PSF h using a 2D Gaussian function2:

hσ(p)(p, q) =
1

2πσ2
e−
‖p−q‖2

2σ2 (3)

where p is the central pixel of the blur circle for scene point P ,
q denotes other pixels in the image plane, and σ(p) = γb(p) is
the standard deviation where the constant γ can be determined
by calibration [5]. Using the PSF, we express the irradiance I
measured on the image plane as the following convolution:

I(p) = (If ∗ hσ(p))(p), (4)

where If is the all-focused image of the scene, such as that
captured by a pinhole camera.

As a result, the input defocus image pair {I1, I2} can
be represented as convolutions for the corresponding focal
settings v1 and v2:

I1(p) = (If ∗ hσ1(p))(p),
I2(p) = (If ∗ hσ2(p))(p),

(5)

where σ1(p) = γb1(p) and σ2(p) = γb2(p). Without loss
of generality, let us assume that σ1 < σ2. I2 can then be
expressed as the following convolution on I1:

I2(p) = (I1 ∗ h∆σ(p))(p), (6)

1Note that Eq. (2) is valid whether the focused point Q is located in front
of or behind the sensor plane. With the absolute value operator, the formula
gives a positive blur radius even when Q is beyond the sensor plane.

2The PSF can be well approximated by a circularly symmetric 2D Gaussian
even when considering diffraction effects [4], [6].
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where ∆σ2 = σ2
2−σ1

2. In the preceding equations, it can be
seen that the defocus difference, ∆σ, at pixel p is determined
by the depth d of the corresponding scene point and the two
known focal settings v1, v2. So Eq. (6) can be represented as

I2(p) = (I1 ∗ h′(d, v1, v2))(p). (7)

where h′ is determined by Eq. (2) and Eq. (3).
Based on Eq. (7), DFD algorithms generally solve for depth

by minimizing the following energy function or some variant
of it:

argmin
d

(I1 ∗ h′(d, v1, v2)− I2(p))2. (8)

B. Bayesian depth-from-defocus model

We now formulate the DFD problem within a Bayesian
framework and obtain a solution using a Markov random
field (MRF). A basic review of Bayesian models and Markov
random fields can be found in [33], [34]. MRF-based solutions
of DFD have also been used in [7], [16], and a Bayesian
analysis of the larger light-field problem was presented in [35].

Let i = 1, . . . , N index a 2D lattice G(ν, ε) of image pixels,
where ν is the set of pixels and ε is the set of links between
pixels in a 4-connected graph. In correspondence with G, let
d = (d1, d2, .., dN ) denote values of the depth map D; let I1 =
(I1

1 , I
1
2 , . . . , I

1
N ) and I2 = (I2

1 , I
2
2 , . . . , I

2
N ) be the observations

at the pixels, and let v = {v1, v2} be the focal settings at
which the image pair was captured. Depth estimation can then
be formulated as a maximum a posteriori (MAP) estimation
problem:

d̂ = argmax
d

P (d|I1, I2, v). (9)

Using Bayes’ theorem,

P (A|B) ∝ P (B|A)P (A), (10)

the posterior MRF problem in Eq. (9) can be expressed as
follows:

d̂ = argmax
d

P (I1, I2, v|d)P (d) (11)

where P (d) is the prior distribution of depth map d, and
P (I1, I2, v|d) is the likelihood of observations I1, I2. P (d) and
P (I1, I2, v|d) can be expressed in terms of energy functions
as in [33]:

P (d) ∝ exp(−E(d)), (12)
P (I1, I2, v|d) ∝ exp(−E(d, I1, I2, v)). (13)

Then the MAP inference of depth by computing Eq. (9) is
equivalent to minimizing the energy:

d̂ = argmin
d

[
E(d, I1, I2, v) + E(d)

]
(14)

which is obtained by applying the negative log operator
on Eq. (11).

The likelihood term E(d, I1, I2, v) can be modeled as the
basic DFD energy from Eq. (8), and the prior term E(d) can
be modeled as depth smoothness along the links [7]:

E(d, I1, I2, v) =
∑
p∈ν

[(I1 ∗ h′(dp, v1, v2))(p)− I2(p)]2, (15)

E(d) = λ
∑

(p,q)∈ε

(dp − dq)2, (16)

where λ balances the DFD energy term and the smoothness
prior term. Hereafter, this particular formulation will be re-
ferred to as standard DFD.

In the remainder of this section, we describe our technique
within this framework of Bayesian depth-from-defocus. In
addition to depth, our method also jointly estimates surface
normals, shading and optionally illumination. The MAP esti-
mation of Eq. (9) effectively becomes a maximization over all
of these quantities. This optimization is done in an iterative
manner as presented in Sec. III-F. Sections III-C to III-E
describe how each of the quantities is optimized based on
the values of the others.

C. Shading-based prior term

Although the smoothness prior of Eq. (16) can reduce noise
in the reconstructed depth, it does not provide any additional
knowledge about the scene and may even over-smooth sharp
edges. We propose to use a more informative prior based
on the shading observed in the DFD image pair, which is
helpful both for reconstructing surfaces with little texture
content and for incorporating the fine-scale shape details that
shading exhibits. In this section, we consider the case of
uniform-albedo surfaces, for which shading can be easily
measured. The more complicated case of textured surfaces will
be addressed in Sec. III-D–Sec. III-F.

Lambertian shading can be modeled as a quadratic function
of the surface normal [1], [36]:

S(n) = nTMn, (17)

where nT = (nx, ny, nz, 1) for surface normal n, and M is
a symmetric 4 × 4 matrix that depends on the second-order
spherical harmonic coefficients of the lighting environment.
With this shading model, we solve for the surface normal map
N of every pixel in ν using the method in [1].

We also obtain the 3D coordinates Pp associated with pixel
p by re-projecting it into the object space according to the
calibrated camera projection matrix as

Pp = ((x− cx) dp/f, (y − cy) dp/f, dp) , (18)

where (x, y) is the image coordinates of p, dp is the depth of
p, (cx, cy) is the principal point of the camera, and f is the
camera focal length in units of pixels.

For each pair of linked pixels p, q in the MRF, we now have
their depths dp, dq , 3D positions Pp, Pq , and normals np,nq .
Since the vector

−−−→
PpPq should be perpendicular to the normal

direction np +nq , we formulate the shading-based prior term
as

E(d) = λ
∑

(p,q)∈ε

(
(
Pq − Pp
‖Pq − Pp‖

)T
np + nq
‖np + nq‖

)2

. (19)

where ε denotes the set of 4-connected neighbors over the
MRF. DFD with this shading-based prior in place of the
smoothness prior will be referred to as DFD with shading
constraints.
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(a) (b) (c)

Fig. 2. Effect of different prior terms on DFD. (a) Original image (synthesized
so that ground truth depth is available). (b/c) Close-up of depth estimates
for the red/green box in (a). From top to bottom: DFD with no prior, the
smoothness prior, and the shading-based prior, followed by the ground truth
depth.

In Fig. 2, we show the improvements achieved by using the
shading constraints in Eq. (19) instead of a smoothness prior
(Eq. (16)). The first and second rows in Fig. 2(b/c) display
close-up views of estimated depth using DFD with no prior
and with a smoothness prior. The third row shows a close-up
of depth estimates with the proposed shading constraints, for
which the normal map is calculated using the approximate in-
focus image Îf together with the illumination matrix M as
done in [1]. In the calibrated illumination setting, we solve
for M using the known surface normal distribution of the
calibration sphere and a least-squares optimization, and the
albedos are determined as described in Sec. III-F(c). For the
uncalibrated case, the illumination and albedos are solved
together as presented in Sec. III-E.

Significant improvements over standard DFD can be seen,
especially in areas with little intensity variation. Such areas
have significant depth ambiguity in DFD, because the likeli-
hood energy in Eq. (15) varies little with respect to estimated
depth. In such cases, DFD needs to rely on a prior term to
obtain a distinct solution. The simple smoothness prior of
Eq. (16) helps by using the depths of neighbors as a constraint,
but this may blur high-frequency details. By contrast, the
shape-based prior term of Eq. (19) provides fine-scale shape
information that more effectively resolves uncertainties in
DFD.

D. Texture handling

Shading information becomes considerably more difficult
to extract from an image when its surfaces contain texture.
This problem arises because the brightness variations from
shading and texture are intertwined in the image intensities.
To separate shading from texture, methods for intrinsic image
decomposition solve the following equation for each pixel p:

ip = sp + rp, (20)

where i, s and r are respectively the logarithms of the image
intensity I , shading value S, and reflectance value R.

In this paper, we decompose an image into its shading and
reflectance components with the help of shape information
provided by DFDS. The method we employ is based on the
work in [30], which uses streams of video and depth maps
captured by a moving Kinect camera. In contrast to their work,
we do not utilize temporal constraints on the decomposition,
since video streams are unavailable in our setting. Also, we are
working with depth data that is often of much lower quality.

The decomposition utilizes the conventional Retinex model
with additional constraints on non-local reflectance [37] and
on similar shading among points that have the same surface
normal direction. Let Ω be the set of all pixels, ℵ be the set
of 8-connected pixel pairs, Gr(p) be the set of pixels having a
local texture pattern similar to that of p (computed as in [37]),
and Gs(p) be the set of pixels with the same surface normal
as p. Then the shading component of the image is computed
through the following minimization:

argmin
s

∑
(p,q)∈ℵ

[ωp,q
s(sp−sq)2+ωp,q

r((ip−sp)−(iq−sq))2]

+
∑
p∈Ω

∑
q∈Gr(p)

[ωnlr((ip − sp)− (iq − sq))2]

+
∑
p∈Ω

∑
q∈Gs(p)

[ωnls(sp − sq)2], (21)

ωp,q
r =

{
ωr if (1− ĉTp ĉq) < τr,
0 otherwise

(22)

ωp,q
s =

{
ωs if (1− n̂Tp n̂q) < τs,
0.1ωs otherwise

(23)

where ĉ denotes chromaticity, n̂ denotes surface normal, τr,
τs represent thresholds that clamp the smoothness weight
between adjacent pixels that have non-similar chromaticity
or normals, and ωr, ωnlr, ωs and ωnls are coefficients that
balance the local and non-local reflectance constraints and
local and non-local shading constraints, respectively.

We note that Eq. (21) is a quadratic function which can be
simplified to a standard quadratic form:

argmin
s

1

2
sTAs− bT s+ c. (24)

This is optimized in our implementation using the precondi-
tioned conjugate gradient algorithm [38].

E. Illumination estimation for uncalibrated scenes

The utilization of a shading-based prior requires the illu-
mination to be known. Although the illumination matrix M
can be easily calibrated in laboratory settings or by inserting a
calibration object into the scene, we also wish to handle more
general settings where these calibration procedures cannot be
used.

In [39], the illumination is estimated by using the depth map
from a depth range sensor as well as the relative albedo. In our
work, we take a similar approach but estimate the depth via
DFDS instead. We first build a relative albedo graph for the in-
focus image If by applying mean-shift segmentation [40] on
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(c)

(a) (b) (d)
Fig. 3. Estimated relative albedo map and illumination. (a) The in-focus
image. (b) Estimated relative albedo map and the corresponding MST.
(Some small segments are ignored for a clearer visualization.) (c) Captured
illumination using a sphere with known Lambertian reflectance. (d) Our
estimated illumination.

its chromaticity values. The segmentation is done with a fixed
set of parameters: an appearance range resolution of hc = 8.0,
spatial resolution of hs = 3.0, and smallest segment size of
M = 500. Pixels within the same segment are assumed to
have the same albedo value. The relative albedo between two
different segments ∫m, ∫n can then be computed as

rmn =
Ip
Iq
, (25)

where p ∈ ∫m, q ∈ ∫n and pixels p and q have the same
surface normal. Since multiple pixel pairs (p, q) may share a
surface normal, we use RANSAC [41] to find a relative albedo
value rmn that is robust to outliers. If no pairs of pixels share
a common surface normal between a pair of segments, then
no relative albedo is computed between the two segments.

The relative albedo graph R = (V,E) is defined as a set V
of nodes that each represent a segment, and a set E of edges
that each represent the relative albedo rmn between node m
and node n as computed in Eq. (25). With this graph, we solve
for albedo values by first computing the maximum spanning
tree (MST) for R with the weight of each edge defined as
the number of pixel pairs (p, q) that share a common surface
normal between the segment pair. We select the node with the
maximum total weight of edges as the root of the tree, and
the albedo value of this root node is set as the average color
in its corresponding segment. The albedo am of each segment
∫m is then computed using the MST and the relative albedo
values rmn.

With these albedo values, we estimate M by minimizing
the following objective function:

argmin
M

∑
m∈MST

∑
p∈m

(
apnp

TMnp − Ip
)2
. (26)

Figure 3 displays an example of the estimated relative albedo
map as well as the illumination.

F. Iterative optimization

The performance of depth-guided intrinsic image decompo-
sition depends on the accuracy of the input depth. Likewise,
the utility of shading constraints in DFD rests on how well
shading is extracted from the image. Since DFDS and intrinsic
image decomposition facilitate each other, we use them in

2.8 3 3.2 3.4 3.6 3.8 4
0

10

20

30

40

50

60

70

80

Depth range

R
el

at
iv

e 
de

fo
cu

s 
en

er
gy

 

 

Samples

Fitted spline line

(a) (b)

Fig. 4. Depth and shading refinement in our iterative approach. (a) Defocus
pair and close-up views of an example patch. (b) A portion of the sampled
relative defocus energy Eq. (15) and the fitted spline.

alternation within an iterative framework. Each iteration begins
with the DFDS step3, followed by decomposition. This cycle
is repeated until the average change in depth within each local
region (determined in our implementation by a 10×10 grid on
the image) falls below a threshold. Algorithm 1 summarizes
this iterative optimization scheme, and implementation details
are given below.

a) MRF optimization: To optimize the MRF model of
Eq. (14), a max-product variant of the belief propagation
algorithm [42] was used in our previous work [3], with a
message update schedule that propagates messages in one
direction and updates each node immediately. Although this
belief propagation yields a global optimum to an MRF model,
it suffers from two drawbacks. One is slow processing due to
the global search, especially for a large depth range. Another
is that the estimated depth labels are discrete values, which
may lead to quantization effects. To address these two issues,
we instead employ a nonlinear optimization based on a spline
approximation to the likelihood term E(d, I1, I2, v) as follows.

Over a small depth interval [d̂− δ, d̂+ δ] around the depth
estimate d̂, the relative defocus energy in Eq. (8) can be
approximated as a third order spline:

t0 + t1(d− d̂) + t2(d− d̂)2 + t3(d− d̂)3, (27)

where t0, t1, t2 and t3 are the fitted spline coefficients.
Applying this approximation to each pixel in ν, we can
represent the likelihood term E(d, I1, I2, v) in Eq. (15) as

E(d, I1, I2, v) ≈
∑
p∈ν

tp0 + tp1(dp − d̂p)

+ tp2(dp − d̂p)2 + tp3(dp − d̂p)3. (28)

With this approximation, the Bayesian DFD model in Eq. (14)
can be solved as a nonlinear optimization problem.

In our implementation, we uniformly sample the depth range
D (computed using the two known focal settings v1 and
v2 together with Eq. (1)) at 256 values, and set δ = D

512 .
Considering that image noise may reduce the quality of a
spline approximation, we use the Akima spline [43] for its
stability to outliers. An example of a fitted Akima spline is

3In the first iteration, we start by applying DFD without shading infor-
mation, since the intrinsic image decomposition has yet to be solved. In the
following iterations, we employ DFDS.
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shown in Fig. 4. The Gauss-Newton method is used for nonlin-
ear optimization. With this spline approximation, computation
time is decreased by more than 10× over the multi-scale belief
propagation used in [3], leading to computation of results in
about five minutes for a 600×400 image pair.

Algorithm 1 Depth-from-defocus with shading constraints
Initialize the depth estimates d by solving the standard DFD
formulation using Eq. (14), Eq. (15) and Eq. (16);
For the case without calibrated illumination, compute illumi-
nation M by optimizing Eq. (26);
repeat
1. (a) For textured objects, do depth-guided intrinsic image
decomposition with depth estimates d to compute shading map
S using Eq. (21)–Eq. (24);
1. (b) For uniform albedo objects, compute shading map S
using the measured albedo;
2. Compute shading constraints N with the computed shading
map S using [1];
3. Solve new depth estimates d̂ by solving the DFD for-
mulation with shading constraints using Eq. (14), Eq. (15)
and Eq. (19);
until ‖d− d̂‖ ≤ threshold; otherwise, d← d̂ and repeat;

b) Parameter adjustments among iterations: Since the
estimated shading and depth are less accurate in earlier
iterations but improve with further iterations, the parame-
ters in DFDS and intrinsic image decomposition are set in
each iteration accordingly to account for this. Initially, the
shading constraint weight λ in Eq. (19) for DFD and the
non-local shading coefficient ωnls in Eq. (21) for intrinsic
image decomposition are set to relatively low values (0.5
and 0.05, respectively, in our implementation) because of
their lower initial accuracy. At each subsequent iteration, both
of these values are increased by a given factor (1.1 in our
implementation) to account for their improved accuracy until
reaching a maximum of twice the initial value, after which
these coefficients are no longer made larger.

c) Illumination calibration: In cases where the illumi-
nation is to be calibrated, we use a white Lambertian sphere
as a calibration object. Since the albedo of the sphere may
differ from those of our target objects, we estimate the
relative albedo between a target object and the sphere simply
by comparing the brightness of a manually identified local
area and the corresponding sphere point that has a similar
surface normal orientation. For objects with surface texture,
the albedo of the selected local area is similarly compared to
the corresponding sphere point, and is used as the reference
albedo for the object.

d) Iteration results: As illustrated in Fig. 5, the iterations
bring improvements to both the estimated depth and shading.
This iterative algorithm converges to a significantly better
result for all the examples we tested.

IV. RESULTS

We evaluated our method on synthetic and real images,
both with and without texture. The depth estimates of our
method are compared to those of three previous techniques:

(a) (b) (c) (d) (e)

Fig. 5. Depth and shading refinement in our iterative approach. (a) Defocus
pair. (b-d) Estimated shading (top) and depth (bottom) for (b) first iteration,
(c) intermediate iteration, (d) final iteration. (e) Ground truth.

(a) (b) (c) (d) (e)

Fig. 6. Comparison of estimated normal maps. (a) From standard DFD.
(b) From SFS with natural illumination [1]. (c) Our estimated depth maps
using multi-scale belief propagation [3]. (d) Our estimated depth maps using
nonlinear optimization with splines. (e) Ground truth.

standard MRF-based DFD with smoothness constraints, DFD
via diffusion [11], and the single-image SIRFS method [25]4.
In these experiments, a foreground mask is used to discard the
background, and depth maps are scaled to the range of [0,1]
for visualization.

A. Synthetic images

The first set of experiments uses synthetic data to provide
comparisons to ground truth. Three object models – Buddha,
feline and zebra [44] – are handled with and without texture,
under illumination from the Eucalyptus Grove environment

4The results for DFD via diffusion and SIRFS were
generated using the authors’ downloadable code at
http://home.eps.hw.ac.uk/˜pf21/pages/page4/page4.html and
http://www.cs.berkeley.edu/˜barron, respectively.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)
Non-texture results Texture results

Fig. 7. Synthetic data results. (a) Ground truth depth maps. (b/h) Non-textured/textured input defocus pairs. Depth estimate results for (c/i) SIRFS [25], (d/k)
DFD via diffusion [11], (e/k) standard DFD, (f/l) our method without calibrated illumination, (g/m) our method with calibrated illumination.

Buddha Feline Zebra
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Non−textured objects

 

 

SIRFS
DFD via Diffusion
Standard DFD
Our Iterative Approach w/o Illumination
Our Iterative Approach with Illumination

Buddha Feline Zebra
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Textured objects

 

 

SIRFS
DFD via Diffusion
Standard DFD
Our Iterative Approach w/o Illumination
Our Iterative Approach with Illumination
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Fig. 8. Depth error analysis. (a) For synthetic non-textured objects. (b) For
synthetic textured objects.

map [45], [36]. The defocus pair is rendered with blur ac-
cording to Eq. (2) and with the virtual camera parameters set
to F = 0.01, Fnum = 2.0, and γ = 1000000. The two
focal settings are chosen such that their focal planes bound
the ground truth depth map, and random Gaussian noise with
a standard deviation of 1.0 is added to simulate real images.

The benefits of utilizing shading information with DFD are
illustrated in Fig. 6 for normal map estimation on textureless
objects. Here, the normal maps are constructed from gradients
in the estimated depth maps. The uncertainty of DFD in areas
with little brightness variation is shown to be resolved by the
shading constraints. As we use the method of SFS with natural
illumination [1] to obtain surface normals, our technique is
able to recover a similar level of shape detail. Due to the effect
of imaging noise on the shading constraints estimated by SFS
and the discrete belief propagation, the results of our previous
method in [3] are relatively noisy. By incorporating the spline

approximation, not only is the discrete depth labeling problem
addressed but also the noise in the shading constraints is
reduced.

Our depth estimation results are exhibited together with
those of the comparison techniques in Fig. 7. The average
errors for each method within the foreground masks are
shown in Fig. 85. With the information in a defocus pair,
our method (Fig. 7(f/g/l/m)) can obtain results more reliable
than that of the single-image SIRFS technique (Fig. 7(c/i)). In
comparison to the two DFD methods (Fig. 7(d/e/j/k)), ours is
able to recover greater shape detail through the use of shading.
Besides comparisons to previous methods, we also compare
the results of our approach with calibrated illumination and
our results using estimated illumination. It is seen that the
results with estimated illumination give a close approximation
to those with calibrated illumination. Because of the utilization
of our shading constraints, our method also estimates better
shape detail than previous methods even when the illumination
is unknown (Fig. 7(f/l)).

B. Real images

We also compared our method to related techniques using
real images. As with the synthetic data, the comparison
methods are SIRFS [25], DFD via diffusion [11], and standard
DFD. The images were captured using a Canon 5D Mark II
camera with a 100mm lens. We mounted the camera on a

5DFD by diffusion does not work as well as standard DFD on our objects
because its preconditioning is less effective when the intensity variations are
not large.
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(a) (b) (c) (d) (e) (f)

Fig. 9. Real image results. (a) Input defocus pairs. Depth estimate results for (b) SIRFS [25], (c) DFD via diffusion [11], (d) standard DFD, (e) our method
without calibrated illumination, and (f) our method with calibrated illumination. Reconstructed 3D meshes are shown below the estimated depth maps.
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tripod and shot the images in RAW mode with the objects
about 50cm away.

The results for real images are shown in Fig. 9. The first
example is a plaster bust of uniform color. With the SIRFS
method, the depth variations on the body correctly follow
the object shape, but the head is shown to be closer than
it actually is. The depth estimates of DFD via diffusion and
standard DFD are both generally accurate for the head and
body. They however exhibit some false fine-scale variations,
perhaps due to DFD ambiguity in non-textured regions. Our
results conform most closely to the actual object, with shading
information to provide shape details and help resolve DFD
uncertainties.

The last three examples contain albedo variations. For the
dress in the second row, our results exhibit a finer level of
detail than the others. The general depth trends shown with
SIRFS are accurate, but the albedo change and shape details
are missed. DFD via diffusion performs relatively well on
this example. Some detail is visible, but not as much as what
our method obtains from shading. Standard DFD shows some
shape detail as well, but also displays some obvious errors,
such as near the top-right corner.

For the turtle in the third row, the depth estimates of our
method show greater accuracy. The SIRFS method does a
fairly good job, but does not indicate the nearness of the right
leg. It also shows the shell and neck at the same depth, and
a smooth depth transition from the head to the shell. DFD
via diffusion does not exhibit the gradual changes of depth
over the object, while standard DFD displays incorrect depth
variations in areas with little texture.

The final example, in the fourth row, is of a bunny figurine.
With SIRFS, the head and far arm are well reconstructed. The
depth of the closer arm, however, is off, and the left foot is
not shown to be closer. Both this result and the one of DFD
via diffusion exhibit less shape detail than our depth estimates.
Standard DFD displays some shape detail, but has problems
on the mostly textureless head.

Our results using estimated illumination show general im-
provement over the comparison techniques, particularly in
some textureless regions (e.g. the head of bunny figurine)
and some shape details (e.g. the skirt and the dress of the
bunny figurine). However, as the estimated illumination is not
as accurate as calibrated illumination, some amount of error
is present in the depth estimation.

Besides the examples captured under laboratory settings,
we further compared our method with standard DFD using
some natural images captured in the Dunhuang caves of China,
for which calibrated illumination is unavailable. Figure 10
shows the estimated depth maps of both standard DFD and
our method for three selected regions. Our results present
more shape details than standard DFD, especially on the facial
structure region in (a/c) and the clothes region in (b). However,
since the illumination estimation is only approximate and the
depth-of-field of the camera is limited, some error exists in
the estimation, e.g. the clothes region in (b). We also present
reconstructed 3D point clouds shown from a different viewing
direction in Fig. 11. The gaps in the clouds result from regions
in the new viewpoint that are occluded from the camera

position.

V. CONCLUSION

In this paper, we presented a method to enhance depth-from-
defocus by incorporating shading constraints. To effectively
utilize the shading information on objects with varying albedo,
we proposed an iterative technique that uses DFD and shading
estimation in a manner in which they facilitate each other. Our
experiments demonstrate that the use of shading constraints
brings greater accuracy and detail to DFD, especially in areas
without clear DFD solutions.

A limitation of this work comes from its use of the Lam-
bertian reflectance model and a low-order spherical harmonic
approximation of the illumination environment. With these
simplified models, specular reflections are not handled in our
shading constraints. In such cases, the depth-from-defocus
term can nevertheless lead to coarsely accurate estimates of
depth.

Although the convergence of our iterative optimization
algorithm is not guaranteed theoretically, we have not observed
oscillatory behavior in our experiments. In future work, we
may reformulate our method in an Expectation Maximization
(EM) framework [46], which conceptually matches the iter-
ative optimization well. The estimation of shading, texture
and illumination can be formulated in an expectation (E)
step, and the MRF for solving depth can be represented in
the maximization (M) step. Corresponding to our iterative
approach, the depth estimated in the M step can in turn be used
to improve the estimation in E step. With an EM formulation,
updates for each step may be derived in closed form using the
Sundberg formula [47].

We plan to investigate ways to increase the accuracy of our
depth estimates. Our current implementation assumes that the
incident illumination is the same at all surface points. How-
ever, this will not be the case due to different self-occlusions of
an object towards different lighting directions. This issue could
be addressed by computing the light visibility of each point
from the estimated depth map. Besides accuracy, we will also
look to increase processing speed. Currently, about 80% of
the computation time is spent on the computation of shading
priors. There is the potential to accelerate this computation
significantly by implementing the nonlinear solver used in [1]
on the GPU [48].
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