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Sparse Residual Regression,” ECCV 2020

Daichi Iwata1, Michael Waechter1, Wen-Yan Lin1, and Yasuyuki Matsushita1

Osaka University

In this supplementary material,

1. we show and discuss additional results for the residual minimization experi-
ments described in our main paper’s Sec. 5.1.

2. We further show the versatility of our method by introducing two more,
highly practically relevant tasks;
– matrix completion for Sec. 5 and
– rotation averaging for Sec. 6.

Residual minimization (paper Sec. 5.1)

In the paper, we showed residual minimization results for matrix A ∈ R106×40.
To evaluate the behavior of our method and RANSAC in more detail, we show
results with different sizes of matrix A. In this additional experiment, we fixed
the number of A’s rows and varied the number of its columns (the number of
unknowns / dimensions) from {10, 20, 30, 40, 50}. For each dimension, we then
generated three types of data: uniform data 20% (UD 20%), uniform data 60%
(UD 60%), and biased data (BD) as described in the paper. Each result is an
average of 10 trials with different random seeds.

The results are summarized in Fig. S1. While RANSAC works well for cases
with a small number of dimensions, its convergence becomes significantly slower
as the number of dimensions increases. Figure S1b shows a rare case where
RANSAC reaches a lower error than the `1 minimization but overall, `1 mini-
mization outperforms RANSAC in these settings and our sketched IRLS often
accelerates the computation by many orders of magnitude. Note that the x-axis
is always logarithmic.



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#1659
ECCV

#1659

2 D. Iwata et al .

uniform sampling, Sketch-Once

uniform sampling, Sketch-Iteratively

leverage score sampling, Sketch-Once

leverage score sampling, Sketch-Iteratively

CountSketch, Sketch-Once

CountSketch, Sketch-Iteratively

SRHT, Sketch-Once

SRHT, Sketch-Iteratively

no sketching

RANSAC

100 101

time (sec)

0.0

0.5

1.0

1.5

2.0

er
ro

r

(a) UD 20% with 10 dim.

100 101 102

time (sec)

1

2

3

4

er
ro

r
(b) UD 60% with 10 dim.

100 101

time (sec)

0

1

2

3

4

er
ro

r

(c) BD with 10 dim.

100 101 102

time (sec)

0.0

0.5

1.0

1.5

2.0

er
ro

r

(d) UD 20% with 20 dim.

100 101 102 103

time (sec)

0.0

0.5

1.0

1.5

er
ro

r

(e) UD 60% with 20 dim.

100 101 102

time (sec)

0.0

0.5

1.0

1.5

2.0

er
ro

r

(f) BD with 20 dim.

100 101 102

time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

er
ro

r

(g) UD 20% with 30 dim.

100 101 102 103

time (sec)

0.5

1.0

1.5

2.0

er
ro

r

(h) UD 60% with 30 dim.

100 101 102

time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

er
ro

r

(i) BD with 30 dim.

100 101 102 103

time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

er
ro

r

(j) UD 20% with 40 dim.

100 101 102 103 104

time (sec)

0.8

1.0

1.2

1.4

1.6

er
ro

r

(k) UD 60% with 40 dim.

100 101 102 103

time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

er
ro

r

(l) BD with 40 dim.

100 101 102 103

time (sec)

0

1

2

3

4

er
ro

r

(m) UD 20% with 50 dim.
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Fig. S1: Error 1
d‖x

∗ − x(t)‖2 over time in residual minimization with `1 minimiza-
tion (with/without sketching) and RANSAC. Dimensions indicate the number
of unknowns x in Ax ' b.
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Matrix completion with low-rank assumption (paper Sec. 5)

This task is similar to low-rank approximation (paper Sec. 5.2), except that
the matrix has missing elements and the goal is to recover them by assuming
that the original matrix has low-rank structure. This task is highly relevant, for
example, in recommendation system [7] and image inpainting [1].

Let M ∈ Rm×n be a matrix of rank r < min(m,n) with missing elements. We
estimate U ∈ Rm×r and V ∈ Rn×r using the known elements in M by solving

min
U,V

∑
(i,j)∈Ω

∣∣Mij − (UV>)ij
∣∣,

where ij is the (i, j)th element of a matrix and Ω is the index set of M’s known
elements.
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ro
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1e 2

uniform sampling, Sketch-Once
uniform sampling, Sketch-Iteratively
CountSketch, Sketch-Once
CountSketch, Sketch-Iteratively
Alternated least squares

Fig. S2: Error over time in `1 matrix
completion on synthetic data

We generated M ∈ R3·104×3·104 with
rank(M) = 30, randomly eliminated
70 % of the elements to be treated
as missing, and then corrupted the
low-rank structure by flipping signs
of 10 % of the not missing ele-
ments. The sketching parameter s
is set to s = 30, 000× 3 % = 900. To
assess our algorithm, we define the
error as in Sec. 5.2 experiment of
the paper. The result is summarized
in Fig. S2. Sketch-once and sketch-
iteratively with uniform sampling converge more than 2 times faster than canon-
ical IRLS. For CountSketch, sketch-iteratively reaches higher accuracy than
sketch-once.

As a comparison method, we chose the `1 Wiberg method [4]. While our
method is based on Ke and Kanade’s [6] Alternated Least Squares (ALS),
`1 Wiberg uses the Gauss-Newton method when updating U. The `1 Wiberg
method is effective for small matrices, but we found it to be difficult to use for
large matrices due to poor memory efficiency and optimizer limitations. We show
a comparison between canonical ALS and `1 Wiberg for small matrices.

We generated two matrices: (a) M ∈ R25×25 with rank(M) = 2, randomly
eliminated 25 % of the elements and added noise to 10 % of the non-missing
elements and (b) M ∈ R100×100 with rank(M) = 5, randomly eliminated 50 %
and added noise to 10 % of the non-missing elements. The results are summarized
in Figures S3a and S3b. In Fig. S3a the `1 Wiberg converges faster than ALS.
However, ALS becomes faster as the matrix size increases as shown in Fig. S3b.
ALS is further accelerated by our Sketched IRLS method as we showed above.
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Fig. S3: Error over time in `1 matrix completion on small synthetic datasets,
25× 25 (left) and 100× 100 (right).

Rotation averaging (paper Sec. 6)

In structure from motion, a famous method is bundle adjustment, which simul-
taneously optimizes the scene’s 3D structure and camera poses. While bundle
adjustment needs a good initialization and solves a nonlinear problem, in recent
years an approach that divides the problem into camera rotation estimation and
structure estimation has attracted attention. Rotation averaging finds each cam-
era’s absolute rotation from the relative rotations between cameras. We denote
the absolute rotation of camera i as Ri and the relative rotation between cam-
eras i and j as Rij . Then, Rij = RjR

−1
i holds. Now we consider N absolute

rotations R1, . . . ,RN and the problem is

min
R1,...,RN

∑
(i,j)∈Ω

d(Rij ,RjR
−1
i ).

d(·, ·) is a distance function and Ω is the set of camera pairs with known relative
rotations. From the relationship between the Lie group and the Lie algebra in 3D
rotation, we can express rotation matrices as R = e[r]× , where [·]× creates a skew-
symmetric matrix and r ∈ R3. Considering exponential relationship for matrices,
eXeY = eX+Y does not generally hold unless the matrices X and Y are commu-
tative. When X and Y are noncommutative, we can use the Baker-Campbell-
Hausdorff (BCH) formula, i.e., eXeY = exp

[
(X + Y) + 1

2 [X,Y] + . . .
]
, where

[·, ·] is a commutator. Using the first-order approximation of the BCH formula,

we can transform Rij = RjR
−1
i into rij ≈ rj − ri [5]. Let rabs =

[
r>1 , . . . , r

>
N

]>
.

Then, we can rewrite rij as

rij = [. . . ,−I, . . . , I, . . .] rabs, (1)

where I is an R3×3 identity and all other parts are zero. We construct Eq. (1)
for all relative rotations and stack them, resulting in an overdetermined linear
problem b = Arabs. Chatterjee and Govindu [2] described the algorithm in detail
and showed the effectiveness of `1 minimization. In the following we speed it up
with matrix sketching.
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(a) Synthetic dataset
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Fig. S4: Median angular error over time in rotation averaging on synthetic
data (left), on the Quad data (right)

Result In this experiment, we used two types of datasets. The first one, a syn-
thetic dataset with known ground truth, has 6, 000 cameras and 589, 789 camera
pairs with known rotations. We added two types of noise: small Gaussian noise
N (0◦, 1◦) for each axis to all relative rotations and big uniform random noise in
the range [−180◦, 180◦] for each axis to 4 % of all relative rotations.

The second is the Quad dataset [3], which consists of 5, 530 cameras and
222, 044 pairs. This dataset also provides the result of bundle adjustment and
we treat it as ground truth, as Chatterjee and Govindu [2] also did. We set the
sketching sizes s to 589, 789× 20 % and 222, 044× 40 %, respectively.

Figures S4a and S4b show the convergence behavior on the synthetic and
the Quad dataset in terms of median angular error over time. Uniform sampling
sketching works well and converges 3–4 times faster than no sketching in Fig. S4a.
In Fig. S4b, both sketching methods show slightly unstable behavior due to the
amount of noise but both also descend fast and the final solution quality is very
similar to that without sketching.
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