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Abstract. This paper presents a near-light photometric stereo method
for spatially varying reflectances. Recent studies in photometric stereo
proposed learning-based approaches to handle diverse real-world reflec-
tances and achieve high accuracy compared to conventional methods.
However, they assume distant (i.e., parallel) lights, which can in practical
settings only be approximately realized, and they fail in near-light con-
ditions. Near-light photometric stereo methods address near-light condi-
tions but previous works are limited to over-simplified reflectances, such
as Lambertian reflectance. The proposed method takes a hybrid approach
of distant- and near-light models, where the surface normal of a small
area (corresponding to a pixel) is computed locally with a distant light
assumption, and the reconstruction error is assessed based on a near-light
image formation model. This paper is the first work to solve unknown,
spatially varying, diverse reflectances in near-light photometric stereo.
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1 Introduction

Photometric stereo estimates surface normals of a scene from multiple images
captured by a fixed camera under varying light conditions. The basic idea of
photometric stereo was introduced in 1980 by Woodham [34] assuming Lamber-
tian reflectance under distant light. In practice, these assumptions typically do
not hold; therefore, a photometric stereo method that can deal with diverse and
spatially varying reflectances in a nearby light setting is wanted.

Recent studies have shown that a deep learning-based approach [26, 6, 11]
can effectively deal with diverse and spatially varying reflectances by establish-
ing a mapping from observed images to a surface normal map. These methods
assume a distant light setting for ease of learning. In a different thread, nearby
light photometric stereo has been studied [12, 17, 22] to explicitly eliminate the
distant light assumption. These works have shown to be effective for Lamber-
tian or simple parametric reflectances, but still suffer from diverse and spatially
varying reflectances. Since these studies for relaxing the Lambertian reflectance
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Fig. 1. Overview of the proposed method. The inputs are the given light calibration
and observations m, and the unknown is the surface position p. Based on assuming light
to be distant (i.e., parallel) locally, we employ a near-light effect cancellation (Eqs. (1)
and (4)) to create a pseudo (distant-light) observation m′, and compute the surface
normal n̂ and reflectance ρ̂ using distant-light photometric stereo. We then assess the
reconstruction of the observation m̂ based on a near-light image formation model.

and distant light assumptions have been developed rather independently, it is
still unclear how these two distinct studies can benefit from each other.

In this work, we present a hybrid approach of distant- and near-light models
for simultaneously removing the assumptions of both Lambertian reflectance and
distant lighting. Specifically, we assume that a single pixel covers a small sur-
face area within which incoming light emitted from a nearby light source can be
modeled as distant (i.e., parallel), although different pixels may be illuminated
by different light directions and strengths. Based on this locally-distant assump-
tion, our method predicts a surface normal per pixel using a deep learning-based
distant-light photometric stereo method that can deal with spatially varying re-
flectances. Based on the surface normal estimates, we assess the reconstruction
error by re-rendering based on a near-light image formation model that explicitly
considers the light fall-off effect. The whole procedure is designed in a differen-
tiable manner with respect to the surface positions so that our method can
benefit from a gradient-based method to efficiently predict the surface positions.

To sum up, our paper offers the following contributions:

– We propose a near-light photometric stereo method that can deal with spa-
tially varying reflectances.

– Compared to previous near-light photometric stereo methods, the proposed
method does not depend on a simplified parametric reflectance model.

– Compared to existing deep learning based photometric stereo methods, the
proposed method explicitly takes nearby light conditions into account.

As a result, the proposed method can handle scenes with diverse materials in
contrast to existing near-light photometric stereo methods. At the same time, in
contrast to most deep learning-based methods, the proposed method can handle
near-light conditions, which should always be considered in a practical setting.
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2 Related work

In this section, we describe previous works of photometric stereo on both distant-
and near-light assumptions. For distant-light photometric stereo, we mainly dis-
cuss the recent deep learning-based methods.

Deep learning-based photometric stereo Early works of photometric stereo [34, 30]
assume Lambertian reflectance and many extended works study the use of more
flexible parametric models, such as the Torrance-Sparrow model [9], microfacet-
based models [32, 7], and bi-polynomial models [29]. Although these methods
have greater flexibility in representing reflectances, they still cannot represent
real-world reflectances well enough, introducing large estimation errors.

Unlike conventional photometric stereo based on parametric reflectance mod-
els, deep learning-based photometric stereo does not explicitly assume a specific
reflectance model, but learns it from a synthesized training dataset. Santo et
al . [26] proposed a fully-connected photometric stereo network, called DPSN,
which directly learns the mapping from observations to the corresponding surface
normal direction. While DPSN assumes pre-defined light conditions for testing,
the newer methods CNN-PS [11] and PS-FCN [6] relax this limitation by han-
dling an arbitrary number of lights and their directions in an order-agnostic way.
CNN-PS proposed a new representation for a photometric observation, called an
observation map, which represents single-pixel observations under an arbitrary
number of light sources by a fixed-shape map representation. In PS-FCN, to
handle an arbitrary number of input images, Chen et al . used a feature fusion
technique with max-pooling to extract a fixed-shape feature map. These meth-
ods use a synthesized dataset rendered with realistic bidirectional reflectance
distribution functions (BRDFs), such as the MERL BRDF database [16] and
the Disney principled BRDF [5] for training.

Unlike these methods, Taniai and Maehara [31] proposed an unsupervised ap-
proach. Specifically, they use two networks, a photometric stereo network that
outputs a prediction of surface normals and an image reconstruction network
that estimates reflectances and outputs re-rendered images, and train the net-
works by re-rendering loss, which is defined as the difference between input
and re-rendered images. We use a similar approach of [31] and minimize the re-
rendering loss, but our setting explicitly assumes a near-light setting that cannot
be directly addressed by Taniai’s work.

Near-light photometric stereo While early works of photometric stereo [34, 30]
assume ideal distant-light sources, explicit treatment of a near-light setting in
photometric stereo began with the work of Iwahori et al . [12]. They consider the
effects of spatially varying light directions and light fall-off that occur in near-
light settings. These effects pose a challenge in photometric stereo because the
image formation model becomes non-linear even with a Lambertian assumption.

The non-linear image formation w.r.t. surface normal results is a non-convex
optimization problem. One line of approaches to this difficulty is based on it-
erative optimization [2, 4, 8, 10, 20]. These methods alternatingly estimate the
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scene’s shape and albedo based on the image formation model using the pre-
diction of the previous step. Although each step of the optimization can be
made convex, the whole objective is non-convex; therefore, a good initial guess
is needed for these methods to work well.

Another class of approaches is based on a variational method, yielding non-
linear partial differential equations (PDEs) [19, 18, 17]. For example, Mecca et
al . [19] consider the intensity ratios of two images and formulate the prob-
lem as a quasi-linear PDE. They extend their work in [18, 17] to relax the
reflectance model from the Lambertian to the Blinn–Phong model [3]. More
recently, Quéau et al . [22] reviewed iterative and PDE-based methods. To solve
the problems that (1) the convergence of iterative methods is not established
and (2) PDE-based methods are sensitive to the initialization, they proposed a
provably convergent alternating reweighted least-squares scheme for solving the
near-light photometric stereo problem. Although they assume Lambertianness,
they show that their method can deal with non-Lambertian observations, such
as shadows and specularities, by a robust variational approach [24].

To sum up, a major limitation of existing near-light photometric stereo meth-
ods is their dependency on simplified reflectance models. Specifically, most of
them rely on the Lambertian model, which limits their applicability in prac-
tice. Our proposed method eliminates this restriction and works with diverse,
spatially varying BRDFs.

3 Image formation model

We first explain our forward model of how images are formed given a scene’s
parameters with arbitrary BRDFs and nearby light. The actual (and in fact often
ill-posed) task of photometric stereo is then the reverse problem, i.e., inferring
scene parameters from given images. In Sec. 4 we explain how our algorithm
does this. Throughout this paper, function u1(·) : R3 → S2 (⊂ R3) represents
vector normalization, i.e., u1(x) = x/‖x‖2.

We denote the 3D position of the jth light source by sj ∈ R3 and the sur-
face position and surface normal corresponding to the ith pixel by pi ∈ R3 and
ni ∈ S2. Let us use lij to represent the light direction from the ith scene point
to the jth light source, i.e.,

lij = u1(sj − pi) . (1)

The observed intensity mij ∈ R at the ith pixel under the jth light without global
illumination effects (cast shadows, inter-reflection, etc.) can be written as [22]

(2)mij = Φij
1

‖sj − pi‖22
max

(
0, l>ijni

)
ρij ,

where Φij is the radiant intensity of the jth light at the surface point corre-
sponding to the ith pixel. ρij is the reflectance at the ith point under the jth

light, expressed as a function ρij : S2 × S2 → R taking surface normal ni and
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incoming light direction lij as input. The term 1
‖sj−pi‖22

accounts for light fall-off

and the max(·) operator accounts for attached shadows.
Let [ui, vi]

> ∈ R2 be a pixel position in image coordinates. Its corresponding
3D surface point pi = [xi, yi, zi]

> in world coordinates is

pi = [ui, vi, zi]
>

under orthographic camera projection, and

pi =

[
zi
f
ui,

zi
f
vi, zi

]>
under perspective camera projection, where zi is the depth, and f is the camera’s
focal length, which can be obtained through camera calibration.

The surface normal ni at surface point pi is ni = u1(∂xpi × ∂ypi), in which
× is the cross product, and ∂∗ represents partial gradient with respect to ∗.
Therefore, in orthographic and perspective projection models, the surface normal
ni can be respectively written as

ni = u1([∂uzi, ∂vzi,−1])
>
,

and
ni = u1([f∂uzi, f∂vzi,−z − ui∂uzi − vi∂vzi])> .

In this paper, we use ni = ν(pi) to represent conversion from a surface point pi
to its surface normal ni for representing either projection model.

We model the light source’s radiant intensity Φij as anisotropic point light,
which is a common assumption in existing near-light photometric stereo meth-
ods [19, 22]. It can be written as

Φij = ψj
[
l>ijωj

]µj
, (3)

where ψj ∈ R is the light source intensity, ωj ∈ S2 is the principal direction of a
light source, and µj ∈ R is an anisotropy parameter. In our setting, we assume
these parameters as well as the light source positions sj are known from a light
calibration method [1, 27, 21, 15].

4 Proposed method

Our goal is to determine surface positions pi, corresponding surface normal ni
and reflectances ρij from a set of observations mij , given light source positions
sj and their radiant intensity parameters (ψj , µj ,ωj) in Φij . To alleviate the
difficulty of the nearby light setting, we cast the problem into a per-point distant
light setting, where individual surface points receive different strengths of light
from different directions. It allows us to use pre-trained learning-based photo-
metric stereo networks, that are trained under a distant light assumption. Once
the prediction of surface normal ni and reflectances ρij are obtained via the
photometric stereo networks, we re-render the scene observations based on the
image formation model Eq. (2) and estimate the scene shape pi by minimizing
the re-rendering loss. Figure 1 illustrates an overview of the proposed method.
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4.1 Formulation

We first define a pseudo observation m′ij as

m′ij = mij

‖sj − pi‖22
Φij

, (4)

in which the light fall-off 1
‖sj−pi‖22

and anisotropic radiant intensity Φij are dis-

counted from the actual observation mij in Eq. (2). With this expression, Eq. (2)
can be rewritten as

m′ij = ρij max(0, l>ijni), (5)

which is equivalent to the distant light image formation model except that we do
not know the surface point pi included in both m′ij and lij . Under f point light

sources, measurements at the ith surface point form a pseudo-observation vector
m′i = [m′i1, · · · ,m′if ]>, and the corresponding light matrix Li can be defined as

L = [li1, · · · , lif ]>.
Now suppose that we have a guess about the surface position pi. Then we can

compute both the light matrix Li and the measurement vector m′i from Eqs. (1)
and (4), respectively. With the light matrix Li and measurement vector m′i, our
method solves for surface normal ni and reflectance ρij at the ith surface point
using two differentiable networks; namely the surface normal estimation network
PS and the reflectance estimation network R:{

n∗i = PS(m′i,Li),
ρ∗ij = Rj(m

′
i,Li),

(6)

where n∗i ∈ S2 and ρ∗ij ∈ R are the prediction of the surface normal and the

reflectance under the jth light, respectively. Unlike previous works which depend
on a parametric reflectance model such as the Lambertian model, the capability
of handling a variety of BRDFs in the proposed method stems from Eq. (6),
whose detail is explained in the next section. Here, we assumed a given guess
of the surface position pi as input for the networks. However, since the surface
normal estimation network PS and reflectance estimation network R are pre-
trained and treated as deterministic functions, by substituting Eqs. (1) and (4)
into Eq. (6), the prediction of the surface normal n∗i and reflectance ρ∗ij become
(differentiable) functions of the surface position pi.

The partial derivative of the surface position pi, written as ν(pi), also rep-
resents surface normal prediction . While the partial derivative ν(pi) is directly
calculated from the prediction of the surface position pi, the estimated nor-
mal n∗i is constrained by learned prior knowledge in the estimation network PS.
For robust estimation, we define the estimated surface normal as the weighted
mean of the partial derivative of the surface point pi and the surface normal n∗i
obtained by the estimation network:

n̂i(pi) = u1((1− κ)u1(ν(pi)) + κn∗i (pi)) , (7)
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where κ (set to 0.5 in our implementation) balances the two surface normals.
In addition, to ensure that the estimates of position pi and surface normal n∗i

are consistent with each other, we use an objective function Ln defined over the
partial derivative of the surface point pi and the predicted surface normal n∗i ,

Ln({pi|∀i}) =
∑
i

{
1− u1(ν(pi))

>
n∗i (pi)

}
.

Once we obtain the predicted surface normal n̂i and reflectances ρ∗ij , we
reconstruct the re-rendered observations m̂ij ∈ R using Eq. (2) as

(8)m̂ij =
Φij

‖sj − pi‖22
max

(
0, l>ijn̂i

)
ρ∗ij .

The re-rendering m̂ij is differentiable1 with respect to the surface position pi
because the networks in Eq. (6) as well as Eqs. (3), (1), (4), (7) are all differ-
entiable. Therefore, we minimize the following objective function for estimating
surface point pi for all i and j starting with an initial guess for pi:

Lm({pi|∀i}) =
1

f

∑
i

∑
j

{u2(mij)− u2(m̂ij(pi))}2 ,

in which u2(·) represents the normalization operation for observations and is
defined as u2(xij) = xij/‖X‖F , X = [xij ], taking care of the global scaling in
observations, as used in [31].

As a result, the final form of the objective function becomes

L = (1− λ)Lm + λLn, (9)

where the scalar weight λ ∈ (0, 1) balances the two objective functions. Finally,
we obtain estimates of the position p̂i = argminpL, the surface normal n̂i(p̂i),
and the reflectance ρ∗ij(p̂i). Since the objective function L is non-convex, the
proposed method requires an initial guess as with most existing near-light pho-
tometric stereo methods. For initialization, we assume that the distance from
the camera to the scene is given by a rough measurement and we use a plane
as initial scene shape. Equation (8) is defined for grayscale observations. For
multi-channel observations, we calculate the re-rendered observations for each
color channel and take the sum of the re-rendering loss Lm from each channel.

4.2 Normal and reflectance estimation networks

The proposed method uses a surface normal network PS and a reflectance es-
timation network R. For the surface normal estimation network PS we adopt
PS-FCN [6]. PS-FCN is an end-to-end differentiable network that takes input

1 max(0, x) is differentiable everywhere except at x = 0, which is in practice not a
problem with numerical differentiation as in many other works.
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Fig. 2. (a) Architecture of the surface normal and reflectance estimation networks.
The feature extractor and normal estimator are the same as in PS-FCN [6] and we
add the reflectance estimator shown in the yellow box. (b) Details of the reflectance
estimator. “Conv”, “Deconv”, and “LeakyReLU” mean a convolution layer with a 3×3
kernel, a deconvolution layer with a 3× 3 kernel and stride 2, and a Leaky ReLU with
a scale factor of α = 0.1, respectively. H ×W is the input image size. The input is the
concatenated features of the local and global features, where both features have a size
of H/2×W/2× 128 and the output is c channel reflectance maps B

(j)
m in the form of

the image shape H ×W × c. The weights are shared for all lightings.

images concatenated with vectors of light directions and outputs the correspond-
ing surface normal map. Its authors showed that PS-FCN works well for scenes
with spatially varying, diverse real-world BRDFs through a benchmark compar-
ison on a real-world dataset. We extend the original PS-FCN for simultaneous
estimation of surface normals and reflectances.

Figure 2 shows an overview of the extended PS-FCN. We add the reflectance
estimator R to the original PS-FCN, which estimates the reflectances B ∈ Rp×f ,

in which an element B
(j)
i ∈ R represents the reflectance at the ith point (corre-

sponding to the pixel) under the jth lighting. p and f are the numbers of pixels
and light sources, respectively. We denote the reflectance map for all pixels under
the jth lighting as B(j) ∈ Rp and the reflectances at the ith pixel under all light-
ings as Bi ∈ Rf . The reflectance estimator takes as input the local features that
are concatenated with the global feature, and outputs the prediction of reflec-
tance map B(:) for all lightings. The global feature provides global information
such as the object’s shape, while the local feature accounts for the reflectances
under individual lightings. For the network architecture of the reflectance esti-
mator R, we use an architecture identical to the one for surface normal estimation
except for the normalization and output shape.

For training, in addition to the original cosine similarity loss for the surface
normals, we use the following re-rendering loss LB for the reflectance estimator

that is defined with the estimated reflectance B
(j)
i :

LB =
∑
i

∑
j

{
m̌ij −B(j)

i max
(
0, l>ijňi

)}2

. (10)

In the above equation, m̌ij ∈ R and ňi ∈ S2 represent the ground truth mea-
surements and the surface normal at the ith surface point under the jth lighting.
Since this network assumes distant lighting, lij represents the lighting direction.
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We use the same training dataset as the original PS-FCN, but normalize the
input images to remove a global scaling ambiguity. Specifically, a ground truth
measurement m̌i = [m̌i1, · · · , m̌if ] is normalized for each pixel by two factors:
its original norm ‖m̌i‖2 and the number of lights/images f . We normalize the

measurements with a scaling factor s = f−
1
2 ‖m̌i‖−12 . Since scaling the observa-

tions also scales the reflectances, we need to undo that by inversely scaling them
with s−1 to keep them consistent with the original reflectances in the images.
We show the evaluation of our extended PS-FCN on a distant-light photometric
stereo dataset in our supplementary material. Although Eq. (10) is for grayscale
observations, for multi-channel observations, we change the output shape of the

reflectance estimator to B
(j)
m ∈ Rp×c where c is the number of color channels.

4.3 Implementation

The proposed method obtains predictions of the scene’s shape by minimizing
the objective function of Eq. (9). In our implementation, to minimize the ob-
jective L we use the Adam optimizer [14] with default settings (β1 = 0.9 and
β2 = 0.99) and set the balancing weight λ to 0.05. We stop iterating when one
of the following is met: (1) L(t+1) −L(t) < τ or (2) t > Titer, where L(t) is the
value of the loss L after the tth iteration. We use τ = 10−6 and Titer = 104.

During the iterations, we randomly sample light sources to construct mini-
batch data. In our implementation, each iteration uses 32 randomly selected
images to reduce the usage of computational resources. The problem would oth-
erwise not fit into the GPU memory if there is a large number of light sources.
Too small mini-batches, on the other hand, result in unstable predictions.

Following Quéau [22], for better and faster convergence we use hierarchi-
cal scaling optimization, i.e., we reduce the input image resolution and use the
resulting solution to initialize the optimization at a higher resolution. In our ex-
periments, we use a coarse-to-fine approach starting from 1/8×, 1/4×, 1/2×, to
1× of the input image resolution. The surface position pi at the lowest resolution
is initialized with a planar depth map.

The learning rate depends on the scaling of the shape pi. Using the initial
depth d and focal length f , we set the initial learning rate to 0.5 × d

f where
the second term corresponds to the physical size of one pixel. For each finer
resolution in the coarse-to-fine approach we then set the learning rate to half of
the previous coarser resolution’s.

5 Experiments

To evaluate the proposed method, we conducted experiments using both syn-
thetic and real-world scenes. For comparison, we used MQ16 [17] and DQ18 [22]
as existing methods for near-light photometric stereo, and PS-FCN [6] for distant-
light photometric stereo. For the input of PS-FCN, we calculated the directions
of each light source using the distance between the camera and the target ob-
ject, which is used for the initial guess in our near-light photometric stereo
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Fig. 3. Estimated results for our synthetic dataset. For each scene and each method,
we show the estimated surface normal map, the depth map, the normal error map,
and the depth error map. “GT” shows the ground truth of normals and depth. The
numbers underneath the error maps show mean angular error in degrees for the surface
normal maps, and mean absolute error for the depth maps.

method. Since PS-FCN only estimates the surface normal, we used a quadratic
integration-based method [23] to obtain depth maps from estimated normal
maps. As for MQ16, the surface normal maps are calculated from the estimated
depth maps. Our method is implemented in PyTorch2. On an NVIDIA Quadro
RTX 8000 GPU it took about 0.6 s per iteration and 30–60 min until full con-
vergence for a scene with 256× 256 px.

5.1 Evaluation with synthetic data

We first evaluated our method using a synthetic dataset. For the evaluation,
we used three scenes: Blob03 [13], the Stanford Bunny [33], and Ganesha [25].
Blob03 is rendered using spatially varying Lambertian reflectances, and Bunny
and Ganesha consist of five different BRDFs, respectively, that are sampled from
measured BRDFs (MERL BRDF database [16]).

We rendered the scenes using the Mitsuba renderer3. The camera’s focal
length was set to 120 mm (35 mm-equivalent), and the image resolution was set

2 PyTorch v1.1.0: http://pytorch.org
3 Mitsuba v0.5.0: http://mitsuba-renderer.org
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(a) capture device (b) target objects

camera

light sources

500mm

CUP TURTLECAN

Fig. 4. Real-world experiment setup. (a): Our capture device has 256 LEDs on a
printed circuit board (500 × 500 mm) at known positions. The CCD camera (FLIR
Blackfly S; 3072× 2048 resolution) is fixed to the board at a known position by a 3D-
printed frame. We put the target objects about 300 mm away from the device. (b): The
three target objects used in our experiments: CAN , CUP, and TURTLE.

to 256 × 256. We defined the scene size so that the distance from camera to
target is 10, which means (X,Y, Z) = (0, 0, 10) in camera coordinates, and put
100 point light sources randomly in the range (X,Y, Z) = (±5,±5, 6 ± 1). The
light sources had identical intensity and ideal uniform radiant patterns (ψj = 1
and µj = 0 for all j in Eq. (3)). For the initialization of the shape pi, we used
a planar depth map whose distance from the camera to the target was obtained
by the mean distance of the ground truth.

Figure 3 shows the scene and estimation results of our method and the com-
parison methods PS-FCN [6], MQ16 [17], and DQ18 [22]. While MQ16 and DQ18
work better for the Lambertian Blob03, for the other two scenes with more gen-
eral BRDFs our method shows superior accuracy in both surface normals and
depth estimates. MQ16’s mean absolute errors for the depth maps are slightly
better than DQ18’s; however, MQ16 exhibits unstable results in scenes with di-
verse BRDFs, which can also be seen in the accuracy of the surface normal maps.
One of the reasons is that, as discussed by Quéau [22], PDE-based methods are
sensitive to the initialization and MQ16 depends on the initialization of both
the depth map and the reflectance parameter, i.e., the shininess of the Blinn–
Phong model. Although PS-FCN can handle non-Lambertian BRDFs such as the
MERL BRDFs, the estimated results are flatter than the ground truth because,
in contrast to the proposed method, it ignores the near-light effects.

5.2 Evaluation with real-world data

To evaluate the performance of our method in real-world scenes, we performed
a real-world experiment in the setup shown in Fig. 4. We carefully designed our
capture device so that the LEDs and the camera are fixed at known positions. We
assumed that all LEDs have identical intensity ψj = 1 and used the radiant in-
tensity distribution obtained from the LED datasheet to calibrate the light emis-
sion (µj = 1 in Eq. (3)). For the target objects, we used (1) a crushed aluminum
can (CAN), (2) a plastic cup (CUP), and (3) a brass turtle shell (TURTLE).
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Fig. 5. Estimation results for our real-world dataset. For each scene and each method,
we show the estimated surface normal map, the depth map, the normal error map,
and the depth error map. “GT” shows the ground truth of normals and depth. The
numbers underneath the error maps show mean angular error in degrees for the surface
normal maps, and mean absolute error for the depth maps.

All of them are made of different materials and include specular reflectances. To
obtain ground truth, we used a structured-light scanner (EinScan Pro) and fol-
lowed the alignment procedures of the DiLiGenT dataset [28]. Note that, in the
evaluation of depth maps we align the estimated depth map to the ground truth
because the estimate may have a shift even when we use the initialization calcu-
lated from the ground truth. Unlike in the synthetic experiments, we obtained
the ground truth by shape-to-image alignment and the absolute depth value of
the ground-truth depth map is sensitive to this alignment. The input images are
first cropped based on the object mask to avoid redundant computation and are
then resized so that the image resolution does not exceed 600 × 600 pixels due
to GPU memory limitations. A more detailed discussion about this limitation
can be found in Sec. 6.

Figure 5 shows the evaluation results on our dataset. As can be seen, MQ16
and DQ18 are heavily affected by the specular reflections whereas our method
handles them significantly better. For example on the CUP, MQ16 is slightly
better than DQ18, especially around the center part of the object, because it
can handle the non-Lambertian reflectances with the Blinn–Phong model, but it
still exhibits large errors due to the instability of the optimization. In contrast,
the proposed method works consistenly better on all scenes. Although the pro-
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Fig. 6. Rerendering results of our method for our real-world dataset. For each scene,
we selected 3 lighting conditions out of the 256 available ones. Each row corresponds to
one lighting condition. “GT” and “Rendered” are the ground truth observations (i.e.,
input images) and rendered images using the estimated reflectances, respectively. The
error maps visualize the absolute error and the numbers underneath the error maps are
the mean absolute errors in a scaled intensity of 0 to 255. For better visualization, we
applied the same brightness correction to both the ground truth and rendered images.

posed method utilizes PS-FCN for normal estimation, it achieves more accurate
estimations than PS-FCN by taking near-light effects into account.

To demonstrate the performance of reflectance estimation, Fig. 6 shows re-
renderings of the scenes using the estimated reflectances. The proposed method
estimates per-pixel and per-light reflectances, and can therefore handle the spa-
tially varying real-world BRDFs. We can see that the obtained reflectance esti-
mations are quite good in all scenes. The estimated reflectances can potentially
be used for applications such as a material recognition and parametric BRDF
estimation, as well as rendering.

6 Discussion

In this paper, we presented a near-light photometric stereo method for spatially
varying reflectances using deep neural networks. Based on the assumption that
lighting can be regarded as distant (i.e., parallel) in a small surface area, our for-
mulation allows us to use distant-light photometric stereo in near-light settings.
The proposed method uses a state-of-the-art deep learning-based photometric
stereo method, PS-FCN, as surface normal and reflectance estimation network,
which can handle diverse, spatially varying reflectances. Compared to existing
near-light methods which assume over-simplified parametric reflectance model,
we showed that our method is superior for scenes with diverse materials. In what
follows, we discuss the current limitations and future directions.
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Depth discontinuity Since most photometric stereo methods assume continuous
surfaces, estimation fails at depth discontinuities. This is also the case for our
method (in Fig. 3 we can see that the Bunny ears have poor accuracy) since
partial derivatives of the surface position pi require differentiability.

Limitation in image resolution Since the proposed method is based on deep
neural networks, it has a limitation due to the available GPU memory. In our
implementation, the optimization for a scene with 460× 630 px consumes about
40 GB GPU memory which fits on the NVIDIA Quadro RTX 8000 ’s 48 GB.
Since we use mini-batch training with respect to the light sources as described
in Sec. 4.3, the number of light sources does not matter. The most memory
intensive block in our network is the reflectance estimation in a per-light manner.
To reduce GPU memory consumption, one possible approach would be to lower
the resolution of the reflectance maps, assuming that scenes do not have high
spatial frequency in the reflectances.

Effect of perspective projection While the light source conditions, distant or
nearby, and the camera projection model, orthographic or perspective, are in-
dependent configurations, near-light photometric stereo typically assumes per-
spective projection. However, our network, the extended PS-FCN from Fig. 2,
assumes orthographic projection in a small patch area. In Sec. 5.1, we only
showed results with a fixed focal length. In our supplemental material we show
the effects of perspective projection and demonstrate that the result deteriora-
tion is not very significant. To handle perspective projection better, one possible
extension would be to use a surface normal and reflectance estimation network
that works in a per-pixel manner as discussed below.

Alternative networks for surface normal and reflectance estimation In this paper,
we presented our framework based on PS-FCN. However, our method can use any
differentiable photometric stereo method for the surface normal and reflectance
estimation network (Eq. (6)).

One possible alternative would be CNN-PS [11], which estimates surface
normals from an observation map which represents per-pixel observations in
a fixed shape and achieves the best accuracy in the DiLiGenT benchmark for
distant-light photometric stereo [28]. Since CNN-PS works in a per-pixel manner,
it is more suitable for the assumptions in Eq. (6). However, to use CNN-PS
in our method, in future work we would have to develop (1) a differentiable
representation of the observation map with respect to both observations and
lighting directions and (2) a simultaneous estimation of reflectances.
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