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Abstract. This paper studies the problem of sparse residual regres-
sion, i.e., learning a linear model using a norm that favors solutions in
which the residuals are sparsely distributed. This is a common prob-
lem in a wide range of computer vision applications where a linear
system has a lot more equations than unknowns and we wish to find
the maximum feasible set of equations by discarding unreliable ones.
We show that one of the most popular solution methods, iteratively
reweighted least squares (IRLS), can be significantly accelerated by the
use of matrix sketching. We analyze the convergence behavior of the
proposed method and show its efficiency on a range of computer vi-
sion applications. The source code for this project can be found at
https://github.com/Diwata0909/Sketched_IRLS.

Keywords: sparse residual regression, `1 minimization, randomized al-
gorithm, matrix sketching

1 Introduction

We consider the problem of residual minimization, where we wish to learn a linear
model that minimizes the residuals that deviate from the model in some distance
metric. For a linear model we have a matrix A ∈ Rn×d (we consider tall matri-
ces, i.e., the strongly over-determined case with n� d ), a vector b ∈ Rn×1,
b 6∈ R(A) (the range of A), and we seek to find

x∗ = argmin
x

∥∥Ax− b
∥∥p
p

(1)

for some p-norm. In this paper, we consider this linear model and call it an `p
(residual) minimization problem. For the more general case including non-linear
residual minimization we refer the reader to, e.g ., Aftab and Hartley [1] or Kiani
and Drummond [36].

One of the most popular methods for `p residual minimization with 1 ≤ p < 2
is iteratively reweighted least squares (IRLS), in which weighted `2 minimization
is repeatedly computed, eventually converging to the `p solution. It is generally
understood that p = 2 is optimal for Gaussian distributed errors whereas the
1-norm leads to solutions with sparser residuals (or Laplacian distributed er-
rors). For sparse residual regression, the `0 pseudo-norm is appropriate to con-
sider; however, due to its computational complexity, a convex `1 relaxation is
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often employed. Because of its capability of ignoring large outliers and reaching
approximate solutions that yield sparse residuals, `1 residual minimization has
become an important tool for various computer vision tasks. It can be specu-
lated that the core reason of why `2 is still widely preferred over `1 despite `1’s
better suitability for many applications, is simply that `2 residual minimization
can be solved efficiently in closed form while `1 residual minimization cannot.
Therefore, acceleration of `1 residual minimization is wanted, especially when
computing budget is limited, e.g ., in end-user applications on mobile devices.

Sketch

Conventional IRLS Sketched IRLS

𝐖𝐀𝐱 ≈ 𝐖𝐛 𝐒(𝐖𝐀)𝐱 ≈ 𝐒(𝐖𝐛)

Fig. 1: Illustration of sketched IRLS: Unlike
canonical IRLS, we suggest performing an
approximate computation in sketched lower
dimensions, yielding significant speed-up
while retaining accuracy.

In recent years, randomized al-
gorithms are gaining attention be-
cause they offer immense speed up
potential with small failure prob-
ability in various applications. In
linear algebra, matrix operations
can be made efficient with random-
ized matrix sketching [39,31,58]. It
is based on the idea of approximat-
ing an input matrix by multiplying
a randomly generated sketching
matrix to obtain a much smaller
matrix that still preserves impor-
tant properties of the input ma-
trix. In particular, certain sketch-
ing matrices S fulfill the subspace
embedding property [11, Sec. 1.2]

1

γ

∥∥Ax
∥∥2
2
≤
∥∥SAx

∥∥2
2
≤ γ

∥∥Ax
∥∥2
2

(2)

for some γ > 1 with high probability, meaning that the `2 subspace embedding S
preserves the lengths of all vectors Ax within the bounds specified by γ, indi-
cating that we can preserve A’s range via sketching even though the sketched
matrix SA lives in lower dimensions. This allows us to accelerate `2 regression.

In this paper, we show that `1 residual regression with IRLS can be signifi-
cantly accelerated by matrix sketching, making it much more useful in practical
applications. We call the new method sketched IRLS. The key idea is to speed
up the internal computation block by projecting the linear system to lower di-
mensions using matrix sketching as illustrated in Fig. 1. Through comparisons
with other robust techniques such as RANSAC, we also show that our method
is versatile. This paper’s contributions are summarized as follows:

– We propose accelerating IRLS for `1 minimization with matrix sketching,
– we analyze the error bound of sketched IRLS compared to canonical IRLS,
– and we provide an analysis of our proposed method’s effectiveness on com-

mon computer vision problems using both synthetic and real-world data.

The proposed method yields the important benefit that the fundamental com-
puter vision task of regression can be executed in an outlier-robust manner with
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the flexible tool of IRLS without excessive computational burden, allowing it to
be used in diverse applications with large datasets.

2 Related works

The problem we study in this paper is related to sparse regression and matrix
sketching. Here we briefly review these two subject areas.
Sparse regression The field of sparse regression has recently developed rapidly,
and its usefulness due to its outlier and noise robustness has been recognized in
many tasks such as face recognition [59,38], image denoising [23], general signal
processing [40], and background estimation [20]. Elad [22] and Zhang [61] give
technical overviews on sparse regression. The goal of sparse regression is to obtain
solutions where many of the unknowns become zero. A typical setting aims at
minimizing the `0 norm of the solution with an under-determined constraint as

min
x
‖x‖0 s.t. Ax = b. (3)

Similar to this problem is the problem of minimizing the `0 norm of residuals
(called robust sensing in [35]) with over-determined Ax ' b, expressed as

min
r
‖r‖0 s.t. r = b−Ax. (4)

Both of these look for sparse unknowns via minimization of the `0-norm of a
vector, which is NP-hard. To address this issue, various optimization strate-
gies have been developed. One of them is based on greedy pursuit and tries to
find an approximate solution for `0 minimization directly in an iterative man-
ner [41,47,54,15,43]. Greedy methods are simple and easy to implement, but they
are only guaranteed to work under very restricted conditions [52].

On the other hand, relaxation methods cast the NP-hard `0 minimization
into, for example, `1 minimization, which is a convex surrogate for `0 mini-
mization. Gorodnitsky and Rao proposed the FOCUSS algorithm [28], in which
they approximate `1 minimization with the 2-norm using IRLS. It is also un-
derstood that `1 minimization can be solved by linear programming (LP) [26].
Several methods have been proposed to solve the `1 minimization problem, for
example, one based on the interior point method [33], Least Angle Regression
(LARS) [21] which is a homotopy algorithm, and the Iterative Shrinkage Thresh-
olding Algorithm (ISTA) [13], to name a few. An excellent summary of recent
`1 minimization methods is given by Yang et al . [60].

Among the `1 minimization methods, IRLS is simple and easily implemented
as it only iterates weighted `2 minimization, and it is known for its fast conver-
gence, i.e., only requiring a small number of iterations to achieve an accurate
solution [46,14,9]. Despite the simplicity of the algorithm, `1 minimization with
IRLS shows good performance in recent applications [20,38,42]. Also, IRLS can
be naturally extended to more general `p minimization and minimization with
other robust functions such as Huber and the Pseudo-Huber functions [1]. To



4 D. Iwata, M. Waechter, W. Lin, and Y. Matsushita

handle nonlinear problems, generalized IRLS has also been proposed and ana-
lyzed theoretically [49,44]. Due to this simplicity and versatility, IRLS has been
one of the most popular methods for `1 minimization and related problems.

Matrix sketching Randomized algorithms are attracting attention recently
as methods to speed up fundamental computation. In linear algebra, matrix
sketching is a randomized algorithm for matrix operations. Woodruff [58], Ma-
honey [39], Halko et al . [31], and Drineas et al . [16] give technical overviews
on matrix sketching and randomized algorithms. In recent years, randomized
algorithms have been widely applied to some specialized linear and algebraic
problems, e.g ., consistent linear systems [29], symmetric diagonally dominant
linear systems [12], and matrix inversion [30]. Matrix sketching is also used for
accelerating several types of matrix decomposition, e.g ., singular value decom-
position [31], QR decomposition [19], and dynamic mode decomposition [24].

As mentioned, matrix sketching is based on the idea that the range of an
input matrix can be well approximated with high probability by random pro-
jection. Such a sketched matrix can then for example be used in regression
problems as they fulfill the subspace embedding property of Eq. (2). One of
the earliest sketching matrices (projectors) were random Gaussian matrices [27]:
Let S ∈ Rs×n be a matrix randomly sampled from a Gaussian distribution. Such
an S fulfills the subspace embedding property with γ = 1 + ε and a small ε ≥ 0.
This is a consequence of the Johnson-Lindenstrauss lemma [32]. However, with
a dense S sketching takes O(nds) time which is very costly. To overcome this,
various methods with other sketching matrices have been proposed. They can
roughly be divided into sampling-based and projection-based methods.

Sampling-based methods extract rows of the matrix. The simple intuition is
that, in strongly overdetermined systems, the row vectors are mostly linearly de-
pendent and a subset of them is sufficient to maintain their span. Selecting rows
of the matrix is equivalent to subsampling the data points. Row sampling could
be achieved by premultiplying the input matrix with a binary matrix that picks
the desired rows, but for efficiency this is in practice implemented with simply
selecting those rows in a streaming fashion. The simplest sampling method is
uniform sampling that selects rows with uniform probability. Drineas et al . [17]
devised leverage score sampling, which samples based on precomputed leverage
scores that unfortunately require computing the singular value decomposition
(SVD), making leverage score sampling somewhat impractical.

Projection-based methods premultiply the input matrix with more general
matrices so that the codomain bases are linear combinations of multiple of
A’s domain bases and not simply selections of A’s domain bases. Ailon and
Chazelle [3] proposed the Fast Johnson-Lindenstrauss Transform (FJLT), and
Tropp [53] and Drineas et al . [18] proposed the Subsampled Randomized Hada-
mard Transform (SRHT) as an extension, which take O(nd log s) time. Clarkson
and Woodruff further proposed the much faster CountSketch method [11], which
was originally used in data streaming [8]. CountSketch takes only O(nnz(A))
time, where nnz(A) is the number of non-zero entries of A.
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3 Proposed method: sketched IRLS

For `p minimization (1 ≤ p < 2) with linear models, IRLS converges to Eq. (1)’s
solution by iteratively minimizing

x(t+1) = argmin
y

∥∥W(t)Ay −W(t)b
∥∥2
2

(5)

with a diagonal weight matrix W(t) at the (t)th iteration that is initialized with
W(0) = In. This is called the `p Weiszfeld algorithm [56,57,2]. For `1 minimiza-
tion, where p = 1, the weights are updated as

W
(t)
i,i =

∣∣Ai,∗x
(t) − bi

∣∣− 1
2 ,

where Ai,∗ is matrix A’s ith row, and Wi,i is weight matrix W’s ith diagonal
element. Solving Eq. (5) requires O(nd2 + d3) arithmetic operations and is thus
expensive for large matrices. Further, since it is repeatedly solved with updated
W in IRLS, it is the computational bottleneck for IRLS-based `p minimization.

The key idea of the proposed method is to accelerate this computation block,
the weighted `2 minimization of Eq. (5), with matrix sketching. Via matrix
sketching, we reduce n-dimensional to much smaller s-dimensional vectors so
that the computational complexity is significantly reduced. Specifically, Eq. (5)’s
weighted `2 minimization is modified as

min
x

∥∥WAx−Wb
∥∥2
2

sketch−−−−→ min
x

∥∥W̃Ax− W̃b
∥∥2
2
,

where WA∈Rn×d and W̃A∈Rs×d, s� n, with retaining the solution’s accu-
racy. For adopting matrix sketching in IRLS, there are two aspects to consider;
(1) when to sketch in the algorithm, and (2) the choice of the sketching method.

3.1 When to sketch?

There are two possible points in time for applying matrix sketching in IRLS; (1)
sketch only once before all IRLS iterations (named sketch-once), and (2) sketch
in every iteration of the weighted `2 minimization (named sketch-iteratively).
We analyze the behavior of these two strategies in this paper.
Sketch-once Not only the `2 minimization but also the sketching contributes
to the algorithm’s overall runtime. One way to reduce the sketching costs is to
only perform it once at the beginning of IRLS, outside of IRLS’s iteration loop.
Algorithm 1 shows pseudo code for IRLS with sketch-once.
Sketch-iteratively Unlike sketch-once, sketch-iteratively performs sketching
within the IRLS iteration loop. In each IRLS iteration, we generate an S∈Rs×n
with s�n and instead of Eq. (5) we solve

x(t+1) = argmin
x

∥∥SW(t)A︸ ︷︷ ︸
=W̃A

(t)

x− SW(t)b︸ ︷︷ ︸
=W̃b

(t)

∥∥2
2
.
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Algorithm 1 IRLS with sketch-once

Input: A ∈ Rn×d, b ∈ Rn, sketching size s, #iterations T , threshold δ for termination
Output: Approximate solution x

W̃(0) ← Identity matrix Is
x(0) ← 0
Ã, b̃← sketch(A,b, s)
for t = 0 : T do

x(t+1) ← solve linear least squares(W̃(t)Ã,W̃(t)b̃)
if
∥∥x(t+1) − x(t)

∥∥
2
< δ then break end if

W̃
(t+1)
i,i ←

(
max{ε, |Ãi,∗x

(t+1) − b̃i|}
)− 1

2

end for

Algorithm 2 IRLS with sketch-iteratively

Input: A ∈ Rn×d, b ∈ Rn, sketching size s, #iterations T , threshold δ for termination
Output: Approximate solution x

W(0) ← Identity matrix In
x(0) ← 0
for t = 0 : T do

W̃A
(t)
,W̃b

(t)
← sketch(W(t)A,W(t)b, s)

x(t+1) ← solve linear least squares(W̃A
(t)
,W̃b

(t)
)

if
∥∥x(t+1) − x(t)

∥∥
2
< δ then break end if

W
(t+1)
i,i ←

(
max{ε, |Ai,∗x

(t+1) − bi|}
)− 1

2

end for

While sketch-iteratively requires more computation time than sketch-once be-
cause of the sketching operation in the loop, it is expected to be more stable
because the linear system is sketched differently in each iteration. Pseudo code
for IRLS with sketch-iteratively is shown in Algorithm 2.

3.2 Sketching method choice

In Sec. 2, we discussed various matrix sketching methods. In this study, we
mainly focus on uniform sampling and CountSketch, because of their computa-
tional efficiency. Both make the sketching matrix sparse, resulting in sketching
computation costs of only O(nnz(A)) time. In practice, they can be implemented
in a streaming fashion without explicitly forming the sketching matrices S.
Uniform sampling samples rows of a tall matrix [A|b] or W[A|b] with uni-
form probability so that the row-dimension can be reduced. Uniform sampling of
a massively over-determined system has been employed in the past in practical
applications, in a similar manner to the sketch-once approach described in the
previous section. In an explicit matrix form, the sketching matrix S is a sparse
matrix in which each row has only one element that is 1 while the rest are zeros.
CountSketch [11] is similar to uniform sampling, but instead of subsampling
rows of matrix A, it uses a sketching matrix S in which each column has a single
randomly chosen non-zero entry (typically, 1 or −1).
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4 Theoretical analysis

We now analyze the errors in IRLS solutions obtained with and without sketch-
ing. To this end, we will show that the proposed sketched IRLS can reliably derive
a solution close to the non-sketched case. As mentioned, sketching can approx-
imate a matrix’s range with a certain accuracy. Since “sketch-iteratively” uses
sketching repeatedly, we consider the errors introduced in each iteration. The
goal is to reveal the relationship between

∥∥Ax̃−b
∥∥
1

and
∥∥Ax∗−b

∥∥
1

for IRLS,
where x∗ is the optimal solution, and x̃ is the approximate solution obtained
with sketched IRLS. We derive it by combining the error bounds of sketching
and IRLS’s convergence rate. Let x∗(t) and x̃(t) be the solutions of canonical and
sketched IRLS, resp., after t iterations, and x̃∗(t+1) be the solution obtained by
solving Eq. (5) without sketching and using W based on x̃(t).

4.1 Condition for the residual to decrease

Before considering error bounds, we first show what condition must be fulfilled
so that the residual in sketched IRLS decreases monotonically, i.e.,

∥∥Ax̃(t+1) −
b
∥∥
1
≤
∥∥Ax̃(t) − b

∥∥
1
. For matrix sketching with `2 regression problems, several

error bounds are known [39,48,17]. In a general form, we can write them as∥∥Ax̃− b
∥∥
2
≤ (1 + ε)

∥∥Ax∗ − b
∥∥
2
, (6)∥∥x̃− x∗

∥∥
2

=
∥∥∆x

∥∥
2
≤ εx, (7)

using x̃ − x∗ := ∆x and small errors ε and εx, which depend on the sketching
method and sketching size. The error decay rate is known for canonical IRLS,
e.g ., linear and super-linear convergence rates [49,14]. According to Daubechies [14,
Sec. 6.1], for sparse variable x problems (Eq. (3)) we have∥∥x̃∗(t+1) − x∗

∥∥
1
≤ µ

∥∥x̃(t) − x∗
∥∥
1

(8)

with a constant µ ≤ 1. It is known that sparse variable problems (Eq. (3)) and
sparse residual problems (Eq. (4)) can be treated as the same problem under
x = r [7], and for sparse residual problems we have∥∥(Ax̃∗(t+1) − b)− (Ax∗ − b)

∥∥
1
≤ µ

∥∥(Ax̃(t) − b)− (Ax∗ − b)
∥∥
1
. (9)

From these, the residuals
∥∥Ax̃(t+1) − b

∥∥
1

and
∥∥Ax̃(t) − b

∥∥
1

satisfy∥∥(Ax̃(t+1) − b)
∥∥
1
−
∥∥(Ax∗ − b)

∥∥
1
≤
∥∥(Ax̃(t+1) − b)− (Ax∗ − b)

∥∥
1

=
∥∥(Ax̃∗(t+1) − b) + A∆x− (Ax∗ − b)

∥∥
1

≤
∥∥(Ax̃∗(t+1) − b)− (Ax∗ − b)

∥∥
1

+
∥∥A∆x

∥∥
1

Eq. (9)

≤ µ
∥∥(Ax̃(t) − b)− (Ax∗ − b)

∥∥
1

+
∥∥A∆x

∥∥
1

≤ µ
∥∥(Ax̃(t) − b)

∥∥
1

+ µ
∥∥(Ax∗ − b)

∥∥
1

+
∥∥A∆x

∥∥
1
. (10)
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From Eq. (10), we finally have∥∥(Ax̃(t+1) − b)
∥∥
1
≤ µ

∥∥(Ax̃(t) − b)
∥∥
1

+ (1 + µ)
∥∥(Ax∗ − b)

∥∥
1

+
∥∥A∆x

∥∥
1
,(11)

and know that when
∥∥A∆x

∥∥
1
≤ (1− µ)

∥∥(Ax̃(t) − b)
∥∥
1
− (1 + µ)

∥∥(Ax∗ − b)
∥∥
1

holds, then
∥∥Ax̃(t+1)−b

∥∥
1
≤
∥∥Ax̃(t)−b

∥∥
1
. We remark that ∆x satisfies Eq. (7),

and when the error of sketching ∆x is sufficiently close to 0, then sketched IRLS
lets the objective decrease monotonically.

4.2 Worst-case residual bound

In this section, we show the relationship between the residuals of canonical IRLS∥∥Ax∗(t) − b
∥∥
1

and sketched IRLS
∥∥Ax̃(t) − b

∥∥
1

after t IRLS iterations using
norm relations. For canonical IRLS, after t iterations we have

η
∥∥Ax∗(0) − b

∥∥
1

=
∥∥Ax∗(t) − b

∥∥
1
, (12)

where, assuming that t is big enough for x∗(t) to converge to x∗, η ∈ [0, 1] is the
ratio between the `1 residuals of the solutions for Eq. (1) with p = 1 and p = 2.
For sketched IRLS, under Section 4.1’s condition, after t iterations we have∥∥Ax̃(t) − b

∥∥
1
≤
∥∥Ax̃(0) − b

∥∥
1
. (13)

Further, we have the norm relations

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2, (14)

where n is the number of dimensions of x. We can now derive a bound on the
solution error due to the sketching after t IRLS iterations:∥∥Ax̃(t)− b

∥∥
1

Eq. (13)

≤
∥∥Ax̃(0)− b

∥∥
1

Eq. (14)

≤
√
n
∥∥Ax̃(0)− b

∥∥
2

Eq. (6)

≤
√
n (1+ε)

∥∥Ax∗(0)− b
∥∥
2

Eq. (14)

≤
√
n (1+ε)

∥∥Ax∗(0) −b
∥∥
1

Eq. (12)
=
√
n (1+ε)η−1

∥∥Ax∗(t) −b
∥∥
1
. (15)

This bound may not be very tight if n is large; however, we next show that a
tighter bound can be expected in practice.

4.3 Expected residual bound

The reason why the bound shown in Eq. (15) looks somewhat loose is mainly
due to the right side expression of Eq. (14). The bound expresses the worst case
and if that case rarely occurs, the bound does not have strong implications.
Therefore, it is reasonable to consider the expected value for the `1-norm. Here,
let x ∈ Rn be an arbitrary vector with ‖x‖2 = r and the expected value for
the `1-norm be E[‖x‖1]. The expectation of the `1-norm of a vector x becomes
E[‖x‖1] = E[|x1|] + . . .+ E[|xn|]. In polar coordinates, x1, . . . , xn are

x1 = r cos θ1,
x2 = r sin θ1 cos θ2,

· · ·
xn−1 = r sin θ1 sin θ2 . . . sin θn−2 cos θn−1,
xn = r sin θ1 sin θ2 . . . sin θn−2 sin θn−1.



An Analysis of Sketched IRLS for Accelerated Sparse Residual Regression 9

Here, we assume that arbitrary random vectors are generated by uniformly
distributed θ, which means that a probability density function p(θ) is a con-
stant. In this case, the probability density function for x1 depends on the arc-
sine distribution. Namely, for −r ≤ x1 ≤ r, the probability density function is
p(x1) = 1

π
√
r2−x2

1

. Therefore, the expectation E[|x1|] becomes

E[|x1|] =

∫ r

−r
|x1| p(x1) dx1 =

∫ r

−r
|x1|

1

π
√
r2 − x21

dx1 =
2

π

∫ r

0

x1√
r2 − x21

dx1

=
2

π

[
−
√
r2 − x21

]r
0

=
2

π
r. (16)

We can write x2 as x2 = r1 cos θ2 with r1 = r sin θ1, and we can obtain E[|x2|] by

using Eq. (16) recursively, i.e., E[|x2|] =
∫ E[r1]
−E[r1] |x2|p(x2) dx2 = 2

πE[r1] = ( 2
π )2r.

Finally, the expected value E[‖x‖1] becomes

E[‖x‖1] = E[|x1|] + E[|x2|] + . . .+ E[|xn−1|] + E[|xn|]
= 2

π r +
(
2
π

)2
r + . . .+

(
2
π

)n−1
r +

(
2
π

)n−1
r

=
n−1∑
i=1

(
2
π

)i
r +

(
2
π

)n−1
r =

2
π+( 2

π )
n−1−2( 2

π )
n

1− 2
π

r.

We thus have an expected bound of
∥∥Ax̃(t) − b

∥∥
1
≤

2
π+( 2

π )
n−1−2( 2

π )
n

1− 2
π

(1 +

ε) η−1
∥∥Ax∗(t) −b

∥∥
1
. With n → ∞, the fraction expression converges to 2

π−2 '
1.75. The expected value is considerably smaller than the worst case value

√
n,

indicating that when n is large, Sec. 4.2’s worst case bound is hardly relevant.
Although it is still far from a strict bound due to the dependency on η, as we
will see in the following sections, sketched IRLS yields highly accurate approxi-
mations in practice in various settings.

5 Performance evaluation

We first evaluate the proposed method’s performance in comparison to canonical
IRLS using synthetic data in common problems, namely, in residual minimization
and low-rank approximation.

5.1 Residual minimization

In `1 residual minimization, given A∈Rn×d, n>d and b∈Rn, we wish to solve

min
x
‖Ax− b‖1

for x ∈ Rd. To form a highly over-determined linear system, we set the size of
matrix A to (n, d) = (106, 40). For assessing the performance variations with re-
spect to the outlier distribution, we formed matrix A in three distinct ways: (a) A
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uniform sampling, Sketch-Once

uniform sampling, Sketch-Iteratively

leverage score sampling, Sketch-Once

leverage score sampling, Sketch-Iteratively

CountSketch, Sketch-Once

CountSketch, Sketch-Iteratively

SRHT, Sketch-Once

SRHT, Sketch-Iteratively

no sketching

RANSAC
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Fig. 2: Averages of the error 1
d‖x

∗ − x(t)‖2 and the standard deviations over time
in residual minimization with various matrix sketching methods and RANSAC
on uniform synthetic data with a lower outlier rate (left), with a higher outlier
rate (center), and with biased synthetic data (right).

drawn from a uniform distribution in [0, 10] and flipped signs of 20 % elements to
create outliers (called uniform data 20%, hereafter), (b) A created like (a) but
with 60 % outliers (called uniform data 60%, hereafter), and (c) A created like
(a) but further corrupted by adding a large value (= 103) to randomly selected
0.1 % of rows (called biased data, hereafter). The ground truth x∗ is created,
and based on x∗, b is pre-computed before adding outliers. We evaluate the
error defined as 1

d‖x
∗ − x(t)‖2, where x(t) is the solution after the tth iteration.

We also compare the accuracy with RANSAC [25] to assess the robustness of `1
minimization against outliers. Unlike `1 minimization, RANSAC requires adjust-
ing a few parameters. We changed the number of samplings, RANSAC’s most
important parameter, and chose the best result from {d+ 1, d× 10, d× 102}.

Figures 2a, 2b and 2c show the results of uniform data 20%, uniform data
60%, and biased data, resp. All results are averages of 10 trials with different
random seeds. The plots show averages of the error, error bars indicate standard
deviations. From Figs. 2a and 2b we can observe that `1 minimization works well
for problems with relatively few outliers, and RANSAC shows slow convergences.
Both methods need to solve least squares minimization many times, IRLS can
be expected to improve the solution for each loop, but RANSAC does not nec-
essarily do so. RANSAC is further known to fail at high-dimensional problems.
Regarding sketching methods, while sampling-based methods with sketch-once
work well for uniform data as shown in Fig. 2a, their accuracies become lower and
variances become larger on the biased data as shown in Fig. 2c. Projection-based
methods work well for either data with low variances, especially CountSketch
with sketch-iteratively. For leverage score sampling, the comparison was done
using the known leverage scores while it is usually unknown a priori. From here
on out, we will focus only on uniform sampling and CountSketch as the chosen
sketching methods because of their efficiency as discussed in Sec. 3.2.
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Fig. 3: Error over time in `1 singular value de-
composition on synthetic data with lower outlier
rate, (left), with higher outlier rate (right)
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5.2 Low-rank approximation

Next, we evaluate the proposed method on low-rank approximation with `1 sin-
gular value decomposition. Given a matrix M ∈ Rm×n, its rank-r approximation
(r < min(m,n)) with `1-norm can be written as

min
U,V
‖M−UV>‖1,

where U and V> are m×r and r×n matrices, respectively. The solution method
involves `1 minimization subproblems that are computed iteratively [34] as

U← argmin
U

‖M−UV>‖1, V← argmin
V

‖M−UV>‖1,

starting from a random initialization of V.
We generated an M ∈ R104×104 with rank(M) = 40, flipped signs of 10 % and

40 % of the elements. We set the sketching size s as 1, 600 and 3, 200. We also
compare the accuracy with robust principal component analysis (R-PCA) [6].
R-PCA decomposes a corrupted matrix M into a low-rank matrix A and a
sparse corruption matrix E, i.e., M = A+E. To solve R-PCA, the Augmented
Lagrange Multiplier method (ALM) [37] is a known effective approach. Also a
previous study accelerated ALM by fast randomized singular value thresholding
(FRSVT) [45]. We used native ALM and ALM with FRSVT as comparison.
These methods also require tuning hyper-parameter λ, and we chose the best
result from λ ∈ {10−1, 10−2, 10−3}.

To assess the accuracy, we define the error as 1
mn‖M

∗ −M(t)‖F , where M∗

is the uncorrupted original matrix and M(t) is the estimated low-rank matrix
after the tth iteration. Figures 3a and 3b show the results. In this setting, `1
minimization achieves high accuracy in both datasets. R-PCA converges quickly
but does not work well for the dataset with many outliers. The sketch-once
strategy shows about 3 times faster convergence compared to canonical IRLS in
Fig. 3a, and also uniform sampling strategy shows fast convergence in Fig. 3b.
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(a) Left: Input images. Right: `1 and `2
stitching results.
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Fig. 5: Performance of image stitching with `1 and `2 homography estimation

5.3 When to sketch?

In the following, we show an experiment that serves to give a first intuition
for when a user should pick the sketch-once or the sketch-iteratively sketching
regime. We generated R104×104 matrices with 10 % noise, we picked the ranks
from {10, 20, 40, 80} and sketching sizes from {rank×5,×10,×20,×40,×80}, and
conducted a low-rank approximation experiment. We checked the times tSO and
tSI until sketch-once and sketch-iteratively achieved an accuracy of 10−5. Fig-
ure 4 shows the values of ln(tSO/tSI). For each rank, the larger the sketching size,
the faster sketch-once converges. As the matrix rank increases, sketch-iteratively
shows faster convergence at larger sketching sizes. The sketching size for ideal
approximations increases faster than O(r). When the sketching size is not big
enough, the risk of not making ideal approximations becomes higher. Especially,
at small sketching sizes, sketch-once is susceptible to making bad approxima-
tions, whereas sketch-iteratively alleviates this effect by repeated sketching and
shows faster convergence for smaller sketching sizes.

6 Applications

Countless computer vision tasks are built upon robust regression. In practical
scenarios, the input is typically quite large and noisy, either due to a noisy
capturing process or a noisy precomputation step, e.g ., incorrect feature matches.
In this section, we demonstrate the proposed sketched IRLS’s effectiveness on
such real-world applications. We adapted our method to problems with over-
determined system: homography estimation and point cloud alignment.

6.1 Homography estimation

Homography estimation is an important building block for image stitching and
plane-to-plane alignment. Given correspondences in two images, the image trans-
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formation can be written by a 3×3 homography H with 8 DoF as

λ[x′, y′, 1]> = H[x, y, 1]>,

where λ is a scaling factor, and (x, y) and (x′, y′) are corresponding points in the
left and right images, respectively [50]. Given a set of correspondences, one can
estimate H by solving a homogeneous system [51, Chap. 6.1]. The set of cor-
respondences may contain many wrong correspondences from erroneous feature
matching. Therefore, conventional methods use robust estimation techniques,
such as RANSAC or `1 regression.
Result We obtained point correspondences by matching AKAZE [4] features
in the two images shown in the left column of Fig. 5a. From 17, 076 obtained
point correspondences we estimated the homography. The second column of
Fig. 5a shows the stitching results of `1 and `2 minimization, respectively. `1
minimization successfully joined the two images whereas `2 minimization pro-
duced a strongly erroneous result due to feature mismatches. In this experiment,
we sketched the matrix to 17, 076×2×1 % ' 341 equations (note that each point
pair gives two equations), and confirmed that the solution did not differ from
the direct `1 minimization without sketching. In Fig. 5b, we can see that the
proposed method (uniform sampling + sketch-once) converges about 5× faster
than canonical IRLS while maintaining the same accuracy.

6.2 Point cloud alignment

Consider the two point sets P = [p1, . . . ,pl] and Q = [q1, . . . ,ql] captured from
different viewpoints around an object. For each i, the points pi ∈ R3 and qi ∈ R3

approximately correspond to the same surface point on the 3D object. Since
P may be positioned and scaled differently in space than Q, we search for a
similarity transform T that, applied to all points in P, makes P and Q roughly
coincide. We therefore optimize

min
T

∑
i

∥∥Tp̃i − q̃i
∥∥, (17)

with the tilde denoting homogeneous representations. This problem is commonly
solved with `2 minimization but with large outliers, e.g ., due to wrong point
correspondences, `1 minimization may be superior. In the veteran but still fre-
quently used Iterative Closest Point (ICP) algorithm [10,5], the point sets are
first manually pre-aligned, then it searches for the nearest neighbor in Q for each
point in P, optimize Eq. (17), and iterate.
Result In this task, we used the Stanford Bunny [55]. The two input point
clouds are shown in Fig. 6a (left). Each set consists of 105 points, viewed from
different viewpoints in different scalings. We applied the proposed sketched IRLS
to perform ICP with `1 residual minimization. The second and third figures of
Fig. 6a show the results of `1 minimization with sketched IRLS and conventional
`2 minimization. It is observed that `1 minimization results in an accurate align-
ment of the two point clouds, unaffected by inaccurate correspondences.
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Fig. 6: Performance of point cloud alignment via ICP with `1 and `2 similarity
transform estimation

For this experiment we set the sketching size s as 10 % of the original problem,
and gradually transformed the point set Q with fixed P. Since we have the
ground truth here, we evaluate the error by 1

l ‖Q
∗ −Q(t)‖F , where Q(t) is the

result after the tth iteration. The evaluation of the error variation w.r.t. time
only for computing the transformation (excluding matchings) is summarized
in Fig. 6b. While CountSketch + sketch-once did not show good convergence,
the other sketching methods find a good alignment with significant speed up
compared to the conventional method.

7 Discussion

Our experiments showed that sketching is effective in reducing IRLS’s runtime
and `1 minimization with IRLS works well on a wide range of computer vision
problems. Other robust methods such as RANSAC and RPCA are certainly good
at specific problems, but IRLS `1 minimization is versatile without requiring
parameter tuning and its convergence is demonstrably superior in some tasks.

Regarding when to sketch, sketch-once is superior if the rank r of the design
matrix A is very small and the sketching is not aggressive, i.e., s� r. However,
if the rank is high or we sketch aggressively, e.g ., s < 5r, then it is likely that
A’s range will not be preserved, and we need to perform sketch-iteratively to be
able to recover from badly chosen samples.

If one näıvely performs subsampling on the input data, this would be equal
to sketch-once sketching, basically treating IRLS as a black box that can never
be touched again after the data has initially been subsampled. The experiments
showed that in applications where sketch-iteratively performs better, we want
to open that black box and perform subsampling in every iteration.
Acknowledgments: This work is supported by JSPS CREST Grant Number
JPMJCR1764, Japan. Michael Waechter was supported through a postdoctoral
fellowship by the Japan Society for the Promotion of Science (JP17F17350).
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