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Abstract We present a method for geometric point
light source calibration. Unlike prior works that use
Lambertian spheres, mirror spheres, or mirror planes,
we use a calibration target consisting of a plane and
small shadow casters at unknown positions above the
plane. We show that shadow observations from a mov-
ing calibration target under a fixed light follow the prin-
ciples of pinhole camera geometry and epipolar geome-
try, allowing joint recovery of the light position and 3D
shadow caster positions, equivalent to how conventional
structure from motion jointly recovers camera param-
eters and 3D feature positions from observed 2D fea-
tures. Moreover, we devised a unified light model that
works with nearby point lights as well as distant light
in one common framework. Our evaluation shows that
our method yields light estimates that are stable and
more accurate than existing techniques while having a
much simpler setup and requiring less manual labor.

Keywords Light source calibration - photometric
stereo - structure from motion

1 Introduction

Accurately estimating the position or direction of a
light source is essential for many physics-based com-
puter vision tasks, such as shape from shading [19],
photometric stereo [37,47], or reflectance and material
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Fig. 1 Clockwise from top left: Our calibration target, a
camera observing the movement of shadows cast by a point
light while the target is moved, our algorithm’s workflow, and
the estimation result.

estimation [14]. In these tasks, inaccurate light posi-
tions cause errors. For example, Fig. 2 shows the rela-
tion between light calibration error and surface normal
estimation error in a synthetic experiment with a di-
rectional light, a Lambertian sphere as target object,
and a basic photometric stereo method [37,47]. We can
clearly see the importance of accurate light calibration.
Ideally, the error of a calibration method is so small
that developers of physics-based modeling algorithms
never need consider it. Although there are approaches
to refine inaccurate light calibration [30] or bypass cali-
bration altogether (uncalibrated photometric stereo [2,
36,8]), they do not make highly accurate calibration
obsolete. Uncalibrated photometric stereo cannot over-
come the generalized bas-relief ambiguity for Lamber-
tian materials and even in favorable settings they do
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Fig. 2 Light calibration error vs. normal estimation error
in photometric stereo. Each data point is the average of 100
independent runs.

not reach the accuracy of accurate calibration. Despite
the importance of accurate light calibration, it remains
laborious as researchers have not yet come up with ac-
curate and easy to use techniques.

This paper proposes a method for calibrating both
distant and near point lights. We introduce a calibra-
tion target, shown in Fig. 1, that can be made within
1-2min from off-the-shelf items for less than five dol-
lars. Instead of specular highlights on spheres, we use a
planar board (shadow receiver) and pins (shadow cast-
ers) that cast small point shadows on the board. Mov-
ing the board around in front of a static camera and
light source and observing the pin head shadows under
various board poses lets us determine the light posi-
tion/direction.

The reasons why we operate with shadows on a
planar target rather than with specular highlights or
spherical targets are the following: A key factor in the
overall calibration accuracy is the accuracy with which
one can localize a calibration method’s points of inter-
est in the captured images. With the off-the-shelf pins
that we use, we can automatically localize shadow cen-
ters with an accuracy of ~1-2px (Fig. 3, left), which
is in marked contrast to how accurately we can detect
specular highlights (Fig. 3, center and right). Moreover,
our planar target translates small shadow localization
errors only into small light direction errors. In contrast,
mirror sphere methods amplify localization errors since
the surface normal, which determines the light reflec-
tion angle, varies across the sphere.

From a geometric point of view, point lights are in-
verse pinhole cameras [20] (see Fig. 4). We can thus
build upon past studies on multiview projective geom-
etry. In particular, we show that shadows of static ob-
jects on a plane follow the principles of epipolar geome-
try. Further we show that, analogous to structure from
motion (SfM) which jointly estimates camera poses and
3D point locations, we can jointly estimate light po-
sition/direction and shadow caster pin positions from
moving our calibration target and observing the pin
shadows, i.e., we can estimate light and pins via struc-
ture from pin motion. Conveniently, this joint estima-
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Fig. 3 Left: The pin head shadows on our planar target.
Center and right: Specular highlights on a mirror plane [35]
and a mirror sphere.

tion of light and pins allows users to place the pins arbi-
trarily on the board and without needing to know their
locations — in contrast to most previous works — our
calibration target does not need to be carefully manu-
factured or measured.

To summarize, the primary contributions of our work
are as follows. First, we show that shadow projection
with a unified light model for both nearby and distant
light follows the principles of pinhole camera projec-
tion and epipolar geometry. Second, using these prin-
ciples we show how the joint estimation of light posi-
tion/direction and 3D shadow caster positions based
on shadow observations can be formulated as a bundle
adjustment problem and we develop a robust solution
technique for accurately achieving this estimation. Fi-
nally, we introduce a practical light source calibration
method based on an easy-to-make calibration target.
Instead of requiring a carefully designed calibration tar-
get, our method only uses needle pins that are stuck at
unknown locations on a plane.

The benefits of the new calibration target and asso-
ciated solution method are an extremely simple target
construction process, a calibration process that requires
no manual intervention other than moving the target
since all required information is inferred automatically,
and improved accuracy compared to prior work.

2 Related work

Light source calibration can be roughly divided into
two tasks: geometric calibration and radiant intensity
distribution (RID) calibration. This paper is solely con-
cerned with geometric calibration but in this section, we
introduce the prior works of both tasks and discuss the
relationship to our work.

Geometric light source calibration: The goal of geomet-
ric light source calibration is to estimate

(a) light source directions in scenes with distant point
light sources or

(b) light source positions in scenes with nearby point
light sources.
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In category (a), Zhang and Yang [48] (and Wei [45]
with a more robust implementation) proposed a method
to estimate multiple distant lights based on a Lamber-
tian sphere’s shadow boundaries and their intensities.
Wang and Samaras [43] extended this to objects of ar-
bitrary but known shape, combining information from
the object’s shading and the shadows cast on the scene.
Zhou and Kambhamettu [49] estimated light directions
from stereo images of a reference sphere with specular
reflection. Cao and Shah [7] proposed a method for esti-
mating camera parameters and the light direction from
shadows of common vertical objects such as walls in-
stead of special, precisely fabricated objects, which can
be used for images from less restricted settings.

In category (b), Powell et al. [28] triangulated mul-
tiple light positions from highlights on three specular
spheres at known positions. Other methods also used
reflective spheres [1,15,33,41,46] or specially designed
geometric objects [3,6,44]. Unlike these methods, some
methods were based on planar mirrors [34,35]. They
modeled the mirror by perspective projection and infer
parameters similar to camera calibration. An interest-
ing method, quite similar to ours in its simplicity and
usage of shadows, is Bouguet and Perona’s [4, Sec. 2.3]:
They captured a pencil standing upright at multiple
positions on a plane and triangulated all rays from pen-
cil tip shadow to pencil tip. The core difference to our
method is that it does not jointly estimate the calibra-
tion target (i.e., pencil) with the light position.

In highlight-based geometric calibration methods, pre-

cisely localizing the light source center’s reflection on
the specular surface is problematic in practice: Even
with the shortest exposure at which one can still barely
detect or annotate other parts of the calibration target
(pose detection markers, sphere outline, etc.), the high-
light is much bigger than an image of the light source
(such as a switched off LED seen in the mirror) would
be; see Fig. 3, center and right. Lens flare, noise, etc.
further complicate segmenting the highlight. Also, since
the highlight is generally not a circle but a conic section
on a mirror plane or an even more complicated shape
on a mirror sphere, the light source center’s image (i.e.,
the intersection of the light cone’s axis and the mirror)
cannot be computed as the highlight’s centroid, as for
example Shen et al. [35] did. We thus argue that it is ex-
tremely hard to reliably localize light source centers on
specular surfaces with pixel accuracy — even with care-
ful manual annotation. Instead, we employ very small
cast shadows for stable localization.

Mirror sphere-based geometric calibration methods
suffer from the fact that the sphere curvature amplifies
highlight localization errors into larger light direction
errors since the surface normal, which determines the

reflection angle, differs between erroneous and correct
highlight location. Also, the spheres need to be very
precise since “even slight geometric inaccuracies on the
surface can lead to highlights that are offset by sev-
eral pixels and markedly influence the stability of the
results” (Ackermann et al. [1]). The prices of precise
spheres (~ $40 for a high-quality 60 mm bearing ball of
which we need 3-8 for accurate calibration) rules out
high-accuracy sphere-based calibration for users on a
tight budget.

Further, sphere methods typically require accurate
annotation of the sphere outline in the images. Although
methods for automatic ellipse detection exist [26], ac-
curately detecting the boundary of the mirror sphere
is extremely difficult because the sphere’s exact outline
is hard to distinguish from the background, especially
in dark images, since the sphere also mirrors the back-
ground.

Regarding the triangulation of multiple line con-
straints for the position of a light source, Hartley and
Sturm [17] and Szeliski [40, Sec. 7.1] pointed out that,
given noisy observations, reprojection error minimiza-
tion is superior to finding the 3D point closest to each
ray in a set of rays. The latter is a popular choice in
many methods of category (b), for example Shen and
Cheng’s mirror plane method [35] or most sphere meth-
ods prior to Ackermann’s [1]. By contrast, Ackermann
et al. [1] and we follow Hartley and Sturm’s sugges-
tion and minimize reprojection error to obtain a more
accurate prediction of light source positions.

The connection between pinhole cameras and point
lights that we describe and exploit in the next section,
has already been shown by others: Hu et al. [20] use it
in a theoretical setting similar to ours with point ob-
jects and shadows. However, they do not turn it into
a full mathematical formalism for the light estimation
but only discuss it with geometric sketches (and sug-
gest using the inferior triangulation method mentioned
above).

We push the idea further by deriving mathemati-
cal solutions, extending it to a unified light model that
includes distant light, embedding it in an SfM frame-
work [38,42] that minimizes reprojection error, deriv-
ing an initialization for the non-convex minimization,
devising a simple calibration target that leverages our
method in the real world, and demonstrating our meth-
od’s accuracy in simulated and real-world experiments.

Radiant intensity distribution calibration: While point
light sources are often assumed to emit light uniformly
in all directions, practical light sources such as LEDs
actually have a non-isotropic lighting distribution (ra-
diant intensity distribution; RID), which is described in
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terms of light orientation, intensities, and an anisotropy
function. Park et al. [25] and Ma et al. [22] handle
non-isotropic lights and jointly estimate the light po-
sition and RID from imagery of shading and specular
reflections on a planar calibration target. In the con-
text of photometric stereo, Quéau et al. [29], Collins et
al. [10], and Song et al. [39] proposed pipelines that
first perform geometric calibration by specularity-based
triangulation and then estimate the RID from shading
on a planar target. Regarding the geometric calibra-
tion, these methods have shown to obtain a more accu-
rate estimation compared to the plane-based methods
of Park et al. [25] and Ma et al. [22]. Although this
paper focuses on geometric calibration, we note that
plane-based RID calibration could be combined with
our method since it uses a similar planar target.

Another way to handle practical light sources in
photometric stereo are “semi-calibrated” approaches [9,
21], which assume given light source positions/direc-
tions and estimate the non-uniform light intensities si-
multaneously with the scene shape. Their methods take
care of part of RID, i.e., the intensities, and assume
isotropic lights or known lights anisotropy function.

More generally, incoming light may be not only from
a single point source but also from a distribution of
many points. Sato et al. [31,32] used shadows of an
object of known shape to estimate illumination distri-
butions of area lights while being restricted to distant
light and having to estimate the shadow receiver’s re-
flectance. Recently, Gardner et al. [12] proposed an esti-
mation method of indoor illumination from a single im-
age with a deep neural network. By limiting the scenes
to indoor environments and training their model with a
panorama image dataset, their method does not require
any calibration target.

3 Shadow geometry

As foundation for the later sections, in this section we
will lay out the mathematics behind shadow projection.
Specifically, we analyze how a point light or distant,
parallel light projects shadows of infinitesimal shadow
casters on a shadow receiver plane. In Sec. 3.1, we will
derive the shadow projection in an entirely static scene.
In Sec. 3.2, we will then analyze shadows in a scene
where the plane and the shadow casters remain static
but the light source moves.

Throughout this paper, we will denote matrices and
vectors with bold upper and lower case, respectively,
and the homogeneous form of vector v with v. Further,
we will sometimes use parentheses and indices to refer
to parts of a vector/matrix/tensor: (v); denotes vector

@P,Camera Pq @ L, Light source L,g
N % AR 7
\ AYRRN S
\ \\\ -
\ 7,7
=27 Image Receiver )<
\ .7 plane plane/fy - $55 %N
Cj' p J 1j

Fig. 4 Cameras vs. point lights. A camera matrix P;
projects a scene point c; to an image point s;; just like a
light matrix L; projects a scene point c; to a shadow s;;.
Conventional SfM estimates P; and c; from {s;;} and in
this paper we show how to estimate L; and c; from {s;;}.

v’s it element, (L); ; is the element in row i and col-
umn j of matrix L, (L); . refers to the entire row ¢ of
L, and (L). ;.; refers to all rows of columns i to j of L.

3.1 Shadow formation model

In this section, we show the mathematical relationship
between a light source, shadow casters, and their cor-
responding shadows on a shadow receiver plane II. Let
us for now assume that the pose of the plane IT is fixed
to the world coordinate system’s x-y plane.

Nearby light: Let a nearby point light be located at
1=[l,,1,,1.]" €R3 in world coordinates. An infinites-
imally small caster located at ¢ € R® in world coordi-
nates casts a shadow on the receiver plane IT at s € R?
in II’s 2D coordinate system, which is § = [ST, 0]—r in
world coordinates because IT coincides with the world’s
z-y plane. Since 1, ¢, and § are all on the same line, the
lines ¢s and 1s must be parallel:

(c—8)x(l-8)=0. (1)
Inserting ¢ = [cz, ¢y, c.] T,  8§=[84,8,,0]T, and

1= [l;,1,,0.] " (all in non-homogeneous 3D global world
coordinates) into Eq. (1) yields

Cy — Sz lesz
(c—8)x(1—8)=|cy—sy| X |ly—sy| =0.
c, — 0 l,—0

Expanding the cross-product yields

(cy — sy)l: —cz(ly —sy) =0,
Cz(la; - 81‘) - (Cl' - Sl')lz =0,
(cx = s2)(ly — sy) — (cy — sy)(la — 82) =0,
cpl, — culy
Sg = —,
- l, —c,
eyl — c2ly
Sy = ————
Y l,—c,
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We can then rewrite s in homogeneous coordinates us-
ing scaling parameters v and A:

[epl.—coly
z—Cz
cylz—czly
lx—cz

=2
e
I

In the following, we will call L a light matrix. As we can
see, point lights and pinhole cameras can be described
by similar mathematical models with the following cor-
respondences: (point light < pinhole camera), (shadow
receiver plane < image plane), (shadow caster < scene
point), and (light matrix L < camera projection ma-
trix P = K [R|t]), as illustrated in Fig. 4. We can even
decompose the light matrix L into “intrinsics” and “ex-
trinsics” parameterized by the light location 1 as

1. 0 I, 0 1. 0 1,] [100—1,
L=|0 —l.l, 0|=|0 =1, [010-L,]|. (2
0 0 1L, 0 0 1] [001—L,

intrinsics K extrinsics [R|t]

Distant light: For distant light, all light rays in the
scene are parallel, 1 = [I,, 1, L)' €82 (82={veR3:
|v| = 1}) is a light direction instead of a position, and
the line ¢S must be parallel to 1:

(c—8) x1=0. (3)

Inserting c, S, and 1 into Eq. (3) yields

Ce — Sz Iy
(c—8)x1l=[¢c, —sy| x |ly| =0.
c, —0 l,

By expanding the cross-product, we have

(cy —sy)l —c:ly =0,
coly — (Cz‘ - SL)ZZ =0,
(cx = s2)ly — (cy — 8y)lz =0,

_ Czlz - Czla:

We can then write s in homogeneous coordinates as:

[calz—c:ly
75: cylzl:czly
1
[—(cpl, — c.ly)
—lL,ys=|—(cyl, —c,l
Y ( Y : y)
A L z
1, 0 I, 0 Zf”
As=1|0 —I.1, cy = Lec.
10 0 0L, f

The difference to the nearby light case is the entry
(L)s3 = 0. This light matrix resembles orthographic

L. . . 1000
projection with a camera matrix 8 (1) 8 (1) .

Unifying nearby and distant light: Having two differ-
ent models, a nearby and a distant light model, is a
nuisance because it forces users to choose the one that
better fits their scene, which can be hard especially for
inexperienced users. Further, the real world does not
exhibit a sharp transition from nearby to distant light
(at a distance of, say, 3m) but rather a smooth tran-
sition. It is thus desirable to have a unified model that
also transitions smoothly. The intuition behind a uni-
fication is that orthographic projection can be seen as
a special case of perspective projection with an infinite
focal length.

Since in homogeneous coordinates we consider vec-
tors equivalent if they are equal up to a constant, we
can divide the nearby and distant light matrices by [.:

1, 0 I, 0 [~1 0 I/l 0]
Lnearby: 0 -l ly 0O |—=1]0 -1 ly/lz 01,
0 0 1-.] |0 0 1/ —1]
1,0l 0] [-10 I/l 0]
Laistant = 0 -l ly 0]—=10 -1 ly/lz 0
L0 0 0-] [0 0O 0 -1

We can see that, if the light source moves towards in-
finity, Lnearby converges to Lgistant. Therefore, we use

Cx

—10 L/L 0] |
0 —114,/1. 0| |7
0 0 1/5 1] |7

A8 = = Lé. (4)

as unified shadow projection equation for representing
both nearby and distant light. Later in this paper, we
will see that we can use the unified projection model for
determining light positions and directions in synthetic
as well as real-world datasets.
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Shadow receiver plane

Fig. 5 A plane has a shadow caster above it at a fixed but
unknown position. Given shadow s cast by light 11, the caster
causing this shadow can be anywhere on the line 1; s, yielding
an infinite series of caster position hypotheses. When the light
moves to position la, this series results in a line of shadows,
the equivalent of the epipolar line in camera geometry.

3.2 Epipolar geometry for shadow correspondences

We will now look at a scene with a moving light source,

static shadow casters, and a static shadow receiver plane.

We analyze shadow correspondences, i.e., the relation
between shadows belonging to the same caster but dif-
ferent light positions. As we saw, shadow projection is a
special case of projective geometry. Thus, shadow cor-
respondences in a static scene with a moving point light
should follow the same principles as image point corre-
spondences in pinhole camera projection with a static
scene and a moving camera: epipolar geometry.

3.2.1 Fundamental shadow matrix

Figure 5 shows a shadow receiver plane IT and two point
lights at positions 1; and l;. Shadow s from a shadow
caster at an unknown position cast by light 1; has corre-
sponding shadows s’ cast by light 1. These can be found
on an epipolar line arising from a fundamental matrix,
which we will derive now analogous to the derivation of
the standard fundamental matrix.

Let ¢ be the caster position, 1; # 1y be the light
positions in calibration target coordinates, L; be 1;’s
light matrix, L] = (L{ L;)"'L{ be L;’s pseudo inverse,
Oy, € null(L1) be a non-zero vector in L;’s one-dimen-
sional null space, and 7 be a scalar. We then have

/\1§1 =Lic = c¢c= )\1Li~_§1 + 770L1
)\25‘»2 = LQé = )\1L2LY§1 + ’f]LQ 0]_,1.

Multiplying 85 [L2@y,,], (with [], being the cross-pro-
duct’s matrix form) from the left, we obtain

A28y Lo@y,], 82 = Mi8g L0y, ], LoLis;

—
0
+185 [Lofr, ], Lobr,
N——
0
= 0=35, [Lofyr,], LoLi 5. (5)
N————
F

Thus, corresponding shadows s; and ss fulfill a condi-
tion with some fundamental matrix F that is directly
analogous to the regular correspondence condition. For
-1 0 1P/ o

0 -1/ 0 1 , we obtain the null space vector
0o o 11 —1

01, {l;l),lél),lgl),l}—r and finally the fundamental

shadow matrix

L=

F = [Lo0y,], LoLf

1 0 IO+ @ 4
o — (1) _(2) 0 1(1)(2) _(2)(1)
1 lzgﬂz?)lz?)zgl) 1@ 2D T T
0 fifa
=|-fi 0 f3|. (6)
—fa—f3 0

Interestingly, this matrix is a special case of regular
fundamental matrices: It is skew-symmetric. For cor-
responding shadows 8; = [u,v,1]" and 8y = [u/,v,1]T
the correspondence condition Eq. (5) becomes

0 fi fo] [W
O0=[uvl]|=f1 0 f3||v
—fo—fz 0] |1

= (w' —vu)fi + (u—u)fo+ (v—2")f3 (7)

We can thus estimate the parameters f1, fa, and f3 of
our fundamental shadow matrix up to scale by solving
the homogeneous linear system

wv) —ovu) ug —uf vy — v £
: f2| = Onxa (8)

Up Ul — Vil Uy — U, Uy — U f3

with n > 2 correspondences using singular value de-
composition. This is actually equivalent to estimating
regular essential matrices for cameras that only undergo
pure translation and no relative rotation [40, Eq. 7.27].
This makes sense since we saw in Eq. (2) that point
lights act like cameras with an identity rotation. As
a consequence, all properties discussed in the follow-
ing also hold for essential matrix estimation of cameras
with pure translation.

Conveniently, the fundamental shadow matrix has
a rank of 2 as a direct result of estimating the param-
eters of a skew-symmetric matrix and the rank does
not need to be enforced in a post-processing step. Fur-
ther, the matrix can be estimated up to scale from 2
point correspondences. Moreover, in contrast to regular
fundamental /essential matrix estimation, fundamental
shadow matrix estimation does not suffer from the most
common degenerate scene point configuration: all 3D
scene points lying in a plane. We will show this now.
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Planar degeneracy: A degeneracy in fundamental ma-
trix estimation means that a correct fundamental ma-
trix F' exists and could be computed from the projection
matrices, but the 3D scene points are in a configuration
such that we can find an F’ # F that also fulfills the
correspondence condition 5 F'8; = 0.

In regular SfM, a well-known degeneracy are copla-
nar scene points. In this case, their projections in both
views are related by a homography: x; = Hx;, the cor-
respondence condition 0 = x,TFx; = x, FH ' x/ is

——

true for any skew-symmetric S, and thus any fuidamen—
tal matrix F = SH (with any skew-symmetric S and
the homography H) is a valid solution [18, Sec. 11.9.2].
The planar degeneracy is relevant in practice because
a camera may have only captured scene points from a
wall, floor, or table surface.

We will now show that fundamental shadow matri-
ces have no general planar degeneracy, i.e., a degener-
acy from coplanar casters independent of their configu-
ration towards the lights and image plane: fundamental
shadow matrices are skew-symmetric, are thus essen-
tial matrices [18, Result 9.17] and can have at most the
degeneracies of essential matrices. Further, since essen-
tial matrices have the form [t]x R, our skew-symmetric
shadow matrices are a special case of essential matri-
ces where we have R = I. From Negahdaripour [23]
we know that when observing the projection of a 3D
plane, there are 2 sets of translation, rotation, and 3D
plane coordinates that satisfy the observations. Let R
be the true and R’ be the alternative rotation. Negah-
daripour’s lemma [23, p. 5] states that

R’ = VR with

_ _ _ 9
V = (1-cosf)nn' +sinfN + cosf1, ©)

where N is skew-symmetric and n is a unit vector. Here
the precise meanings of i1, #, and N do not matter, only
the form of Eq. (9) does. Recall that the rotations of
fundamental shadow matrices are identities. Inserting
R’ =R =1 into Eq. (9) yields

I=VI=(1—cosf)nn' +sinfN +cosfI

T sin ¢

= I=nn (10)

l1—cos®
As |n| = 1, nn' has at most one diagonal element that
is 1. As N is skew-symmetric, the diagonal elements of
1ii:oZ§N are all 0. Thus, Eq. (10) cannot be true, im-
plying that constraining the essential matrix to a skew-
symmetric matrix removes the planar degeneracy.

In our application, not having a general planar de-
generacy is important as we work with approximately
coplanar shadow casters (the red pin heads in Fig. 1).

Further, it means we can estimate F with 3 casters even
though 3 casters are necessarily coplanar.

Apart from the lack of a general planar degeneracy,
there do exist specialized ones. Most of them are fairly
obvious and rather irrelevant in practice, e.g., casters
lying on the image plane (their shadows thus always
keeping their positions) or all lights and casters being
collinear (all shadows thus being projected to the same
point). Beside these, the only degeneracy we could find
is all casters and both lights being coplanar, in which
case all shadows are projected to the line where the
image plane and the casters-and-lights plane intersect.
However, this configuration is unlikely in reality. To
make it non-degenerate, it suffices that 1 caster or 1
light is not in the casters-and-lights plane.

We further found empirically that the estimation of
F from 2 casters, which are necessarily collinear, is not
generally degenerate. Both lights and one or both cast-
ers or both casters and one or both lights being collinear
is degenerate. And again, both casters and both lights
being coplanar is degenerate but one light or caster not
being in the casters-and-lights plane is non-degenerate.

Hartley normalization: Hartley [16] proposed normal-
izing the points [u;,v;] " and [u},v!]" to zero mean and
unit variance in z- and y-directions to increase the algo-
rithm’s numerical stability in applications with large x
and y image coordinates. In regular Hartley normaliza-
tion, it is admissible to normalize the points of the left
and right images independently (with scaling parame-
ters s;, sy, sy, s, and shifting parameters d, d, d,
d;) to obtain the normalized point coordinates (u,,,v,)
and (u!,v!):

n?

al; li

/
i | 7 /!
Vu|=1]o0 L —Zf|v| and |u (=| 1 4|V
Sy Sy YA
Y Yy
1 0 0 1 1 1 o ¢ 1 1

For fundamental shadow matrices, we need to be
more cautious because we want to maintain their spe-
cial structure. Normalizing both images identically, i.e.,

/! !/

u, u u, u 1o —de
. Sk Sx

v, |=N|v| and |0 [=N|[v| with N=|y 1+ _dy
Sy Sry

1 1 1 1 00 1

preserves F’s skew-symmetry:

0 fi fo
N'|-fi 0 f3|N=
—fo—fz 0
0 f —f1dy —|—f25y
o -5 0 Jide + f3s2
T Lhdy = fasy —fide — f3ss 0
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Using different matrices for the left and right image
would result in a non-skew-symmetric matrix which
would require more than 2 point correspondences for
estimation.

Analogous to regular Hartley normalization, from
the matrix F, for normalized points, we can compute
the matrix F for unnormalized points as

F=N'F,N.
3.2.2 Trifocal shadow tensor

For shadow correspondences in 3 images, we have a tri-
focal shadow tensor (“tritensor” or “shadow tritensor”
in the following). The tritensor’s general form for 3 gen-
eral projection matrices Py, Po, P3 is [18, Eq. (17.12)]

(Pl ) 1:p—1,:
(T = (1t | )
(PS)T,:

(recall that the (-); ; notation extracts parts of a ma-

-1 0 11 o
trix). Inserting 3 light matrices L; = | 0 —11{? /19 o

0 0 11V -1

for Py, P>, and P3 yields

1
T= o

lil)(lf)lig)—lf)lf)) liz)(lél)l(zs)_l;:«;)lil)) l;z)(lie,)_l(zm)
1D —i(i®) 0 0
13 (10 -1 0 0
0 1D i) 0
li”(lil)l(zB)—lf’)lS)) lil)(ly)l(f)—l(y?’)l(f)) l(zz>(l§3)—l(zl>)
0 13 (10 1) 0
0 0

0 0
2 1 3 3 1 2 1 3 3 1
DD ID) 1D (IO 31D

OO0
l§i>(z§3>fl§2>)

l§3)(l;2)l(z“—l§1)l(zz>)‘|‘|

Thus, similar to the fundamental shadow matrix, the
shadow tritensor also has a special structure as

t1tat3|[|0tg O] 0 O tg
T:[Tl,TQ,Tg] = t4 00 t7 tg tg 00 t4 . (12)
ts 0 0|0 t5 0|ty ta to

It can further be verified that T, Ts, and T3 always
have rank 2 each, as required [18, p. 373].

For the shadow tritensor, the correspondence con-
dition for shadows §; = [u,v,1]", 83 = [v/,v',1]T, and
83 = [u”,v",1]T is [18, Eq. (15.7)]:

[S2] x (Zie{l&g}(gl)i Ti) [83]x = O3x3,

which can be reformulated into the system shown in
Eq. (13) on the next page. Its row echelon form, which

has the same solution as the original system, is shown in
Eq. (14) on the next page, revealing the system’s rank
of 4. We thus need at least 2 shadow correspondences
and stack their matrices to estimate the 9 unknowns of
the shadow tritensor up to scale. In contrast, general
tritensor estimation requires at least 7 correspondences
for the linear algorithm [18, Algorithm 16.1].

Hartley normalization: When normalizing input points
for better numerical stability, we again need to normal-
ize all images identically to maintain the tritensor’s spe-
cial structure (Eq. (12)) and keep its parameters to 9:

/ !/ " "

U, u ul u u!! U
v, [=N v, [V |=N]|v|, and |v/|=N|v"
1 1 1 1 1 1

1 de

50 0~

with N={0 L —%
Sy Sy

00 1

8.2.83 Quadrifocal shadow tensor

The quadrifocal shadow tensor Q (or “shadow quadten-
sor” or “quadtensor” in the following) describes 4-view
shadow correspondences. The quadtensor’s form for 4
general projection matrices P; is [18, Eq. (17.21)]

Eplip,:
P2 q,:
<P3)T,: ’ (15)
(P4)s,:

Inserting light matrices for the projections yields Q as
shown in the left of Fig. A.1 in the appendix. Its exact
content is less relevant here but we note that it has the
following shape with 18 unknowns:

(Q)p,q,r,s = det

00 0 0 0 gq 0 —gq2 0
[0 0 741} {0 0 qa} —q4 97 G8
0qg1 O 94 95 g6 0 g O
0 0 qio 0 0 —qi4 15 —q13 —gs
Q=| 10 0 qgu [0 0 0 } —q1 0 0 (16)
q12 913 —Ge q14 0 0 —q9 0 0
0 —qio O —q15 —35 q16 0 —qig 0
—q12 —q7 —qie| |—g3 0 O {tns 0 0}
0 qi7 O -q17 0 0 0 0 0

The correspondence conditions [18, Eq. (17.20)] for 4
shadows 81 =[u,v,1]T, 8o =[u/, v/, 1], 83=[u" 0", 1]T,
Sq4=[u",v" 1]T are (with the Levi-Civita symbol ¢)

Z (81)i(82); (83)k (S4)1 €ipwEjqairy€isz(L)p,q,rs =0
Kl
T

7’5

©,J,
Pq
Iterating over the free variables w, z, y, z yields 81 equa-
tions of which 3 are zero independent of the data. The
remaining 78 put in a homogeneous system are shown
in Fig. A.1, right, in the appendix. The system has rank
13 and stacking observations from >2 correspondences
suffices to estimate the 18 unknowns up to scale.
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3.2.4 Distant light

In our calibration method that we describe in Sec. 4, we
always use the unified light model for which we derived
the shadow matrices/tensors above. Nevertheless, it is
interesting to see what properties shadow matrix/ten-
sor estimation has for scenes where we can assume dis-
tant light with certainty.

Inserting distant light matrices into our derivations
reveals that the shadow matrices/tensors take on spe-
cialized shapes: Compared to their counterparts for the
unified light model (Egs. (6), (12), and (16)), they have
the same pattern of repeated entries and zero entries,
but a few additional entries become zero. For the funda-
mental shadow matrix we have f; = 0 and the remain-
ing 2 unknowns can be estimated from 1 shadow corre-
spondence. For the tritensor, we have t3 = t5 = tg = 0,
and the system (Eq. (13)) stays rank 4; thus, we need 2
correspondences to estimate the remaining 6 unknowns.
For the quadtensor, we have g = qs = g9 = q16 = 17 =
q18 = 0, the rank of the estimation system (Fig. A.1,
right) drops from 13 to 11 and we need only 1 corre-
spondence to estimate the remaining 12 unknowns.

8.2.5 Shadow correspondences through an uncalibrated
camera

If the shadow observations for which we try to find a
shadow matrix/tensor or shadow correspondences, are
not given in the coordinate system of the shadow re-
ceiver plane but only in the image coordinates of a
static, uncalibrated pinhole camera that observes the
receiver plane, the complexity of shadow matrix/tensor
estimation does interestingly not increase: We can still
estimate them from just 2 shadow correspondences. A
static pinhole camera observing coplanar shadows can
be modeled with a homography (invertible 3 x 3 matrix)

0 v vV v VU
0 0 —u'’v u—u'’ —uv’
0 —u'"v’ 0 —wv’” v (w” —uv)
0 u—u’ —uv’’ 0 —u'v
—u 0 uu’’ 0 uu’
w’ u’ (v =) 0 0 u (u’v—uv')
0 —wv’ v (wv —u'v) —uv” 0
uv’ 0 u’ (v —w') v (v —u) 0
l—uv’v"" wu'v’ 0 uu'v’’ 0
[—u 0 uu’’ 0 uu’
0 —u 0 _— o (uv” — ')
0 [N w—u —u’
0o 0~ (0 (u— )+ (=) (wor” ' — w o — u?)

w20

0 0 —v  =v"v""7 Tt1]
0 v —' 0 u'’ v’ to
0 v (v —wv) W 0 t3
v —v" 0 0 u'v’’ ta
u'’ u’ 0 —u'u"| [ts| = 0gx1 (13)
—u''v —u'v"’ 0 0 te
v — v’ 0 u'v 0 tr
—u''v’ —u'v 0 0 ts
u'’ v’ wov”’ —u'u’v 0 | [to]
t1
t2
uo” e u’+ y EJ, —u(;u” Ij
v v_i] 5 v v 1o r5 = 04)( 1
’((]v —v") = (v — 1;) ('uLU’ +o(u—u')) u'?v? (Ou — ') u”zv’v”L(L:w’ +u'v) ir’

(14)

H in the shadow projection equations:
A:s; = HL;cC.

Analogous to Eq. (5), we can then derive the funda-
mental shadow matrix for shadows observed through
an uncalibrated camera:
F,.= [HLQQ)HLI]XHLQ(HLl)Jr

see [27, Eq. (214)]
[HL,0y,], HL, (HTHL,) " (HL, L) "
[HL,0y,], HLo(H 'HL;)TH*
[HLQ@LI]XHLQLTH_l

follows from
(Ha) x (Hb)=det(H)H ' (axb)

= det(H)H " [Ly0g,], Lo LyH™!
o« H™' [Lo0y, ], LoLiH™
—H '"FH ',

where F is the original fundamental matrix of Eq. (5)
for the shadows given in shadow receiver plane coordi-
nates. F. is also skew-symmetric and can thus be esti-
mated from > 2 correspondences using Eq. (8). Analo-
gous to Egs. (11) and (15), the shadow tensors become

(HP1)1:p—1,:
_ (_ +1 (HP1)p+1:n,:
(T)p,gr = (—1)PT det (HP,),. and
(HPS)T,:
(HPl)p,:
_ (HPQ)q,:
(Q)P#I s det (HP3)T);
(HP4)S,2

These have the same patterns of zeros and identical
entries as the original tensors (Egs. (12) and (16)) and
can thus be estimated from > 2 correspondences using
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Table 1 Minimal number of shadow correspondences re-
quired to estimate shadow matrices/tensors.

shadow  shadow shadow
F-matrix tritensor quadtensor

coordinate system

of the shadows light model

shadow receiver nearby /unified 2 2 2
shadow receiver distant 1 2 1
observing camera nearby/unified 2 2 2
observing camera distant 2 2 2

Egs. (13), (14), or (A.1), respectively. The counterparts
of these matrices/tensors for distant light have the same
shape as those for nearby light and they all need to be
estimated from > 2 correspondences.

Table 1 sums up the minimal number of correspon-
dences required for shadow matrix/tensor estimation.

4 Proposed method

Our method estimates a nearby point light’s position
or a distant light’s direction using a simple calibration
target consisting of a shadow receiver plane and shadow
casters above the plane (see Fig. 1). Our method auto-
matically achieves the point light source calibration by
observing the calibration target multiple times from a
fixed viewpoint under a fixed point light source while
changing the calibration target’s pose. The 3D positions
of the shadow casters relative to the calibration target
are treated unknown, which makes it particularly easy
to build the target while the problem remains tractable
as we will see later in this section. We now describe our
proposed calibration method.

4.1 Light source calibration as bundle adjustment

Our goal is to determine the light 1 in Eq. (4) by ob-
serving the shadows cast by unknown casters. A single
shadow observation s does not provide sufficient infor-
mation to solve this. We thus let the receiver plane
undergo multiple poses {[R;|t;]}. In pose i, the light
position 1; in receiver plane coordinates is related to 1
in world coordinates as

L=[0 590" =RI1-R] ;.

With this index ¢ the matrices {L;} read
—1 0 1919 0

0 —1157/1%9 o

0 0 119 -1

L =

If we use not only multiple poses {[R;|t;]} but also mul-
tiple shadow casters {c;} (to increase the calibration
accuracy as we show later), we obtain shadows {s;;} for

each combination of pose i and caster j. Equation (4)
then becomes

)\ijgij = Liéj.

Assuming that the target poses {[R;|t;]} are known,
our goal is to estimate the light position 1 in world co-
ordinates and the shadow caster locations {c;} in cali-
bration target coordinates. We formulate this as a least-
squares objective function of the reprojection error:

We solve this nonlinear least-squares problem with Le-
venberg-Marquardt [24]. For robust estimation we use
RANSAC [11]: We repeatedly choose a random obser-
vation set, estimate (I, c;, A;;), and select the estimate
with the smallest residual.

4.2 Initializing the bundle adjustment

Equation (17) is non-convex and thus affected by the
initialization. To find a good initial guess, we relax our
problem into a convex one as follows.

Nearby light: For nearby light, we can write the objec-
tive analogous to Eq. (1) as (¢; —§;5) x (1; —§;;) =0
and then, using 1; = R]1— R/ t;, as

(Cj — gij) X (R;rl — R;rtl — gij) =0.
With Cj = [Cj,za Cj,y» Cj’Z]T, gij = [Sz, Sy7 O]T, 1= [lx, ly, lZ]T
To T1 T2

T_ | 2 Ty T
R, = [;g s :g}, and —R; t; = [tz,1,,t.] , we can re-

write this as

)

0= (Cj — 51‘]‘) X (R;rl— l:l;l—tZ — gij)
Cjx — Sz [7"07 1, 7’2} 1+t — s,
= |Cjy — Sy | X |[rs,ra,r5) 14+t — sy
Cj,z [T67 7, 718} 1 + tz
Expanding the cross-product yields

0=(cj,y=sy)([re,r7, 8] 14+t=) —c;, = ([r3, 74, 75] I ty—5y),
OZCj,z([T(th:T?] l+tz_sz)_(cj,z_5z)([7n67 T73T8] 1+tz)7
0= (ijzism)([’r377n47r5] l+ty78y)

—(¢jy—sy)([ro,m1,m2] 14+-te —sz),

which we can rewrite as

—syt. = —c¢j,y([re,r7, 78] 14+t2) + sy[re, r7,rs]1
+¢j.z([rs, 74, rs] 14ty —sy),
Satz = —c¢j,z([ro, 71, r2] 14+te —sz),
+ ¢j,a([re, 7, 8] 14t2) — sz[re,r7, 78] 1
Sytz —Saty = — ¢j,a([r3,7a,r5] 14ty —Sy)+Sa[rs, 74, 75]1
+¢j,y([ro,r1, m2] 14+te —sz) —sy[ro, r1, r2] L.
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and then write it in matrix form:

i T6Sy —7r6Sz T3Sz —Tosy_T M1 ]
7Sy  —T78g T4Sgp — T1Sy Ly
T8Sy —7r8Sy T58¢ — T'2Sy Il
0 t, Sy—1y Cj,z
—t 0 —Sz+ty Cj,y
—Sy+ 1ty Sz—ts 0 Cj,z
0 T6 —7rs loCj o —syts
—7re 0 0 lzcjy | = Szts .
T3 -7 0 lzcCj, 2 Syte —Saty
0 r7 —ry lycj =
—r7 0 T1 lij’y
T4 —ry 0 lycj, =
0 T8 —Ts5 ZZC]'J:
—7rsg 0 ro l2Cj,y
L T5 —T2 0 ] _lij’z_

(18)

Note the matrix transpose used for space reasons. This
equation captures one observation, i.e., one combina-
tion of pose ¢ and caster j, but we need to stack equa-
tions from multiple observations. To simplify the fol-
lowing step, let us first split Eq. (18) into sub-matrices:

1c R3

[QijGR?)XS Wij€R3X12] oje RlZ

= [bij S RB] .

Note that here the matrix is not transposed.
Let N, and N, be the number of target poses and
casters. The whole system of stacked equations then is

r Qi1 Wi o O .- 0 7 [ b1, T
Qn,1 Wn,1 0 0 .- 0 by, 1
Q1,2 0 Wiz 0 --- 0 1 by 2

. . . . . 01 .
: : S : 0 |_|
Qn, 2 0 Wn,20 - 0 . bn,,2
S o
Q1,n, 0 0 0 - Win [~—~— |bin,
) . 0
Qn~,,~N, O 0 0 ---Wy, n.J Lbn,, N,
A b
(19)

We have 3+12N. unknowns since all observations share
1=[l,,1,,1.]" and each 6, has 12 unknowns. We solve

0" = argmin [|[A0 — b, (20)
0

using ¢; minimization to be robust against outliers. For
solving this equation we must fulfill

1
BN,Ne > 12N.+3 & Ny >4+

#equations #variables

Thus, observations from N, = 5 poses suffice to derive
a solution regardless of the number of casters, if the

problem has a non-degenerate, unique solution. After
obtaining 6%, we disregard the second-order variables,
such as l,c; , and I;c; ,, and use ¢} and 1* as initializa-
tion for minimizing Eq. (17).

Distant light: For distant light, A is rank deficient:
rank(A) = 3+ 12N, — 1, because we modeled the light
with 3 degrees of freedom (DoF') but distant light only
has 2 DoF and the shadow observations can thus be
explained by an infinite set of light vectors with same
directions but different lengths. Thus, we can unfortu-
nately not use Eq. (18) for distant light but we can
automatically detect this case, switch to equations for
distant light, solve, and switch back to the unified bun-
dle adjustment of Eq. (17). So, again users do not have
to choose a light model for their scene.

We detect distant light by constructing matrix A for
nearby light and detecting A’s rank degeneracy: If the
ratio between A’s largest and smallest singular value is
larger than 4-10% (in Sec. 5.1.4 we will give an analysis
of this threshold), we switch to the following distant
light equations.

For distant light we can write the objective analo-
gous to Eq. (3) (using 1; = R/ 1):

(Cj — gij) X R:l =0.

Keeping the definitions of c;, §;;, R/, and —R/ t;, we
can write this as

Cjz — Sz [r0,71,72]1
(Cj — gij) X le = |Cjy — Sy | X [7”3,7“4,7“5]1 =0.
Cjz [r6,77,78]1

Expanding the cross-product yields

0= (Cj,y - Sy) [T57r77T8] - Cj,z [T37T47T5] 17
0= Cj,z [’r‘o,?“l,’f'z] 1-— (Cj,z - Sz) [TG:T77 TS] L

0= (¢cj,o —Sz)[rs,ra,rs5]1— (¢cj,y — Sy)[ro,71,72] L.
Setting 1= [l,, 1, 1" to reduce 1 to two DoF yields

0=(cj,y — sy)(rela +r7ly +78) — ¢j,2(rsle + Taly +15),
0=cj,z(role + r1ly +12) — (¢j,2 — 82)(r6le + 171y +18),
0=(¢j,s— 8z )(r3latraly+rs)—(cjy—Sy)(role+rily+r2),

which we can rewrite as

—Syrg =—¢j,y(rele + r7ly +1r8) + sy(rele + r7ly)
+ ¢j,2(r3le +raly +1s5),
SaTs =— ¢j,z(rols + r1ly +12)
+ ¢ja(rels +17ly +78) — S0 (r6ls + 17ly),
Syr2—8275 == Cj,2(r3le + Taly +75) + 82(r3le+raly)
+ ¢j,y(role+rily+r2)—sy(role+r1ly).
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This can be rewritten in matrix form as

-Tﬁsy —TrgSy T3Sy — TQSy- T Iy i
T78y —T7Sg T4Sg — T18y ly
0 78 —Ts Cjx
—rg 0 T Ciy
rs —To 0 Cjz —5,T8
0 T —r3 loCjz| = SxTs
—r¢ O o laCjy SyTa — SgTs
rs  —7To 0 GCj,z T
O 7 —T4 lij7x Y
—Tr7 O T1 lij,y
L Ta —r1 0 ] _lijyz_
—_——
A 0;

(21)

Again, note the matrix transpose for space saving. Split
into sub-matrices, this reads

1€ R?

[Qi;e R3X2 W ;€ R3%9] {0]-6 RO

:| = [bi]’ (S RS] .
Multiple observations get stacked in a similar manner
to Eq. (19) and solved using Eq. (20). For solving, we
must fulfill

2

> .
3N,N, > 9N, +2 N

& Np >3+

#equations #variables

Thus, 4 poses suffice regardless of the number of cast-
ers. Since the formulation for distant light (Eq. (20) in
conjunction with Eqgs. (19) and (21)) returns a light di-
rection for 1* but the unified bundle adjustment requires
a light position, we need to convert from a direction to
a position. We start at one of the casters and move the
light source out very far in space:

* =c+Khel

*
position direction>

where c is an arbitrary caster’s position in world co-
ordinates (obtained through the relaxation method), «
is a large constant (we use x = 101%), and he is the
caster’s height above the shadow receiver plane (which
takes the scale of the scene into account).

4.3 Shadow correspondence search

For Egs. (17), (18), and (21) we need to assign the same
index j to all shadows §;; that belong to the same caster
c; in different images {I;}. This correspondence prob-
lem is easier to solve if the input is structured, i.e., we
have information about the relation between the input
images. If the input is a video for example, then we can
track shadows over consecutive frames. However, it is
clearly desirable to also be able to handle unstructured

input just like regular SfM. Unstructured input occurs
if separate images or multiple videos are captured or if
we record a video but some tracks break (due to lens
flare, noise, shadows leaving the field of view, etc.).

In Sec. 3.2, we developed the basis for finding shad-
ow correspondences in unstructured input: Shadows on
a plane from a moving point light obey correspondence
conditions with specialized fundamental matrices, tri-
tensors, and quadtensors, which we will use for finding
shadow correspondences and rejecting shadow misde-
tections. Since quadtensors are impractical because cor-
respondence search in four views is very costly (unless
some strong prior knowledge about possible correspon-
dences narrows the search down), we will only cover
fundamental matrices and tritensors in the following.

Formally, shadow correspondence search means we
need to find permutations that match corresponding
shadows between images. Let S be the shadows {S;}
and S’ be the shadows {§}} stacked horizontally into
matrices. For fundamental matrices we seek to find

> H((S/P/);,i)TF(S):’i

i€{1,...,N.}

argmin (22)

P',F
s.t. P/ is a permutation matrix.

(Recall that (-).; extracts a matrix’s i'" column.) For
tritensor estimation we need to solve

argmin Z

! 1
PP ie{l,....N.}

H (SP)..],
T=[T:,T2,T3]

> (8),T5) [(S"P).,

J€{1,2,3}

s.t. P’ and P” are permutation matrices. (23)

We cannot use feature descriptors to narrow the search
down since we want the shadows to be very small (to
make the shadow “center” precisely localizable) and
thus cannot vary a caster’s shape enough to make its
shadows clearly distinguishable from other casters’ shad-
ows. We thus find the minimizer of Eq. (23) with branch
and bound on the detected shadow points without de-
scriptors. This procedure returns a significant fraction
of wrong correspondences. Inspired by the removal of
inconsistent feature tracks in SfM (see, e.g., Photo-
Tourism [38, Sec. 4.1]) we check the consistency of cor-
respondences across multiple images.

Correspondence consistency check: We work on two im-
age pools; images with established shadow correspon-
dences (“established pool”) and images with unknown
correspondences (“unknown pool”). The established
pool is initialized with a random unknown image and
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the goal is to move as many images as possible from the
unknown to the established pool.

For fundamental shadow matrices we work in two
phases: In phase 1 we randomly pick an image I. from
the established pool and k images I;,,...,I;, from the

unknown pool. Let %’(si, s;) be a binary function that
is true iff Eq. (22)’s minimizer for images I, and I,
matches shadow s; in I, with shadow s; in I. Then, if

Vsjin I, s;in I, sj,in L, ..., s, in I,
eriq 11219 19413
M (8os8j0) A M (850585,) A M (8555855) A v A

e>tg

U3l h
5 kl( Sjk—17sjk) = m(sjovsjk)

Tp-11
Sjk-Z’Sjk—l) A n k(

holds (i.e., correspondences through the chain of images
are consistent with the direct correspondences from the
first to the last image), we move {I;,,...,I;, } to the es-
tablished pool. To make the constraint relatively strict,
our implementation uses k = 3. Once half of all images
are in the established pool, we switch to phase 2.

In phase 2 we assume all images in the established
pool to be consistent. Thus, if we consider one unknown
image and one shadow caster, all shadows in all estab-
lished images that correspond to that particular caster
should match the same shadow in the unknown image;
and this should hold for all shadow casters. We pick
a random unknown image, verify this criterion, and if
more than half of all established images agree on their
correspondences to the unknown image, it is moved to
the established set. Elsewise, it is discarded. Phase 2
ends when the unknown pool is empty.

For shadow tritensors, we also work in two phases.
In phase 1 we randomly select one unknown image as
target, one established image, and [ unknown images
for testing (I = 15 in our implementation), iterate over
the test images, and use Eq. (23) to compute the trifo-
cal tensors for the target image, the established image
and the current test image. If more than é of the ten-
sors agree on the correspondences between target and
established image, we move the target image to the es-
tablished pool. Once half of all images are in the estab-
lished pool, we switch to phase 2 which works equivalent
to phase 2 for fundamental matrices.

4.4 ITmplementation details

To obtain our target’s pose {[R;|t;]}, we print ArUco
markers [13] on a piece of paper, attach it to the target
(see Fig. 1, left), and use OpenCV 3D pose estima-
tion [5]. Our shadow casters are off-the-shelf pins with
a length of ~30mm and a head diameter of ~3mm,
which is big enough to easily detect them and small

Fig. 6 Two lights casting two shadows per pin.

enough to accurately localize them. We can place the
pins arbitrarily without measuring their position since
the bundle adjustment estimates their position.

For shadow detection we developed a simple tem-
plate matching scheme. For the templates we generated
synthetic images of shadows consisting of a line with a
circle at the end. To deal with varying projective trans-
formations we use 12 rotation angles with 3 scalings
each. We match the templates after binarizing the input
image to extract shadowed regions more easily. Further
we use the color of the pin heads to distinguish between
heads and head shadows.

4.5 Estimating multiple lights jointly

Our method can estimate multiple lights jointly. It can
work with multiple lights that were captured

a) simultaneously (see Fig. 6) or

b) separately, i.e., we switch on one light at a time and
capture its shadows. It is, of course, necessary to use
the same calibration target for all lights so that all
caster positions stay constant in calibration target
coordinates.

From the bundle adjustment’s viewpoint both cases are
equivalent since applying the calibration target poses
transforms all shadow positions into the same coordi-
nate system, namely the target’s — no matter whether
they were captured simultaneously or separately.

For both cases the benefit over single light calibra-
tion is improved accuracy: More captured data puts
more constraints on the shadow caster positions, there-
fore the caster position estimates will be more accurate
and as a consequence the light position estimates will
also be more accurate. An additional benefit of case a) is
that simultaneous light capturing saves time. Note that,
although our equations set no theoretical limit for the
number of lights to be simultaneously estimated, there
are very strong practical limits: Since we need to reli-
ably detect each shadow point in the imagery, we are
limited to very few lights in practice due to the low
contrast and overlap of shadows under too many lights.
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Fig. 7 A scene with 2 lights and 3 casters. In each pose,
fundamental matrices enable us to split the 6 shadows into 2
sets (blue rectangles) of 3 shadows, each set corresponding to
one of the lights. However, the fundamental matrices cannot
match these shadow sets across poses due to an ambiguity
that allows connecting any pair of sets (blue arrows).

In Sec. 4.3 we discussed a correspondence problem:
Finding all shadows §;; that belong to the same caster
c; in different images i. Multiple lights entail another
correspondence problem: finding all shadows from the
same light to couple the correct shadows §; ; 1, casters
c; and lights 15 in our equations. For separately cap-
tured lights this is trivially to solve since we know which
light was on when a particular shadow was captured.

For simultaneously captured light this is harder. Let
us consider the example in Fig. 7: We have a scene with
2 lights and 3 casters. The shadow projection process is
hinted at with transparent casters and arrows. In each
of the two target poses we can use fundamental shadow
matrix estimation to separate the 6 shadows into 2 sets
of 3 shadows, each corresponding to one of the lights.
We, however, cannot match these sets of 3 shadows
across images. We can find fundamental shadow matri-
ces F; and Fy that connect the shadow set {si,s2,s3}
with {S7, Ss, Sg} and {S4, S5, SG} with {Sl()7 S11, 512} but
we can also find matrices F} # F; and F), # Fs that
connect {si,s2,s3} with {s19,s11,812} and {s4,s5,s6}
with {s7,ss,sg}. This is because fundamental shadow
matrices cannot distinguish whether the shadow move-
ment resulted from changing the calibration target pose
or from changing the light position.

When using only fundamental matrices, tritensors
or quadtensors, this is a fundamental ambiguity and
not an implementation problem. To overcome this, we
require users to capture a video and track each shadow
from frame to frame. Thereby we can follow the set
{s1,82,83} transitioning into {s7,ss,s9} and then as-
sign the same light index k to them.

To sum up, estimating multiple lights jointly in-
creases the calibration accuracy. If multiple lights are
captured separately, the data can be completely un-
structured. If the lights are captured simultaneously,
additional information is needed to resolve an ambigu-
ity. In this case we expect a video as input.

—Light
[tz + 100

S N
S
>('2/"35 +15 T Caster +30°

T3000 ¢30°
Fig. 8 The arrows show the value ranges of our simulation

experiments.

Table 2 Estimation error (mean of ten random trials) in a
synthetic, noise-free setting.

. N mean absolute/angular error of
z ¢ | light source positions/directions
500 2 6.4 x 10~ 14
] 500 5 9.5 x 1014
2 500 10 5.4 x 10714
5 1000 2 3.5 x 10713
2 1000 5 7.0 x 10714
1000 10 2.6 x 10713
= 00 2 1.2 x 10712 deg.
g ’go 00 5 2.4 x 10715 deg.
5 o 10 1.4 x 10712 deg.

5 Evaluation

We now assess our method’s accuracy using simulation
experiments (Sec. 5.1) and real-world scenes (Sec. 5.2).

5.1 Simulation

For all following simulated experiments we randomly
sampled target poses, caster positions and light posi-
tions (the latter only for near light conditions) from
uniform distributions within the ranges shown in Fig. 8.
The casters were randomly placed on a target of size
200x200. For distant light, we sampled the light direc-
tion’s polar angle 6 from [0°, 45°].

We evaluated the absolute/angular error of estimat-
ed light positions/directions while varying the distance
t, between light and calibration target and the number
of casters N.. Table 2 shows that each configuration’s
mean error is > 14 orders of magnitude smaller than
the scene extent, confirming that our method solves the
joint estimation of light position/direction and shadow
caster positions accurately in an ideal setup. In our ex-
perience, the difference between using the unified light
model and using one of the specialized models (nearby
or distant) is negligible.

In practice, light source estimates will be deterio-
rated by two main error sources: (1) Shadow localiza-
tion and (2) the marker-based target pose estimation.
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5.1.1 Shadow localization errors

To analyze the influence of shadow localization, we per-
turbed the shadow positions with Gaussian noise. In
this and the following experiments we set ¢, = 500 so
that our synthetic scenes’ proportions match those of
our main real-world scene E1 (see Fig. 13) that we intro-
duce later, with 1 synthetic length unit corresponding
to 1 mm. Figure 9 shows the estimation accuracy of the
convex relaxation (Eq. (20)) compared to the accuracy
of full bundle adjustment (Eq. (17) after initialization
with convex relaxation) for near and distant light, vary-
ing N, and N, and varying standard deviation o for
the shadow position noise.

Figure 9’s top row confirms that larger shadow po-
sition noise results in larger error and full bundle ad-
justment mitigates the error compared to solving only
the convex relaxation. Increasing the number of casters
or target poses makes Eqs. (20) and (17) more overcon-
strained and thus reduces the error from noisy shadow
locations as Figure 9’s middle and bottom row confirm.

5.1.2 Target pose estimation errors

To simulate errors in the target pose estimation, we per-
formed an experiment where we added Gaussian noise
to the target’s roll, pitch, and yaw. Figure 10’s top row
shows that the error is again higher for stronger noise
and the bundle adjustment mitigates the error of the
convex relaxation. In Fig. 10’s middle and bottom row
we increased the number of casters and target poses
again. Bundle adjustment and increasing the number
of poses reduce the error, but increasing the number
of casters does not. This is not surprising since adding
constraints to our system only helps if the constraints
have independent noise. Here, the noises for all shad-
ows §; ; of the same pose 7 stem from the same pose
noise and are thus highly correlated. Thus, increasing
the number of poses is more important for improving
the accuracy than increasing the number of casters.

5.1.8 Combined shadow localization and target pose
estimation errors

Previously, we studied the effect of shadow localization
errors and target pose errors separately. In this section
we show simulation results where we added both types
of noise at the same time. Comparing the top rows of
Figs. 9 and 10, we can see that shadow localization noise
causes errors roughly twice as big as those from target
pose noise. In this experiment we thus set the standard
deviation for shadow localization noise t0 Oshadows =
0.01 and for target pose noise to opose = 0.005.

For the number of shadow casters varying from 1
to 9 and the number of poses varying from 5 to 100,
Fig. 11 shows color-coded (log-scale) median error in
the top row and standard deviation in the bottom row.
Again, bundle adjustment and more poses and casters
decrease the error. If the application at hand dictates
one of the two parameters, e.g., if time restrictions for-
bid increasing N, beyond 20, this can always be coun-
tered by increasing the other parameter. Even though
the minimal conditions for solving the calibration are
1 caster and 4 or 5 poses, the data suggests that users
should probably always use 3 or more casters and 20 or
more poses in practice.

5.1.4 Discerning nearby from distant light

As discussed in Sec. 4.2, we can discern nearby and
distant light based on the condition number of A. In a
noise-free setup, the condition number becomes larger
than 10'® for distant light and smaller than 10° for near
light even in the hardest setting: N, = 5. Thus, near
and distant light can easily be discerned.

For noisy input, our method requires more poses for
a clear distinction: Figure 12 shows histograms of the
condition numbers for N, = 5, 20, and 50. We can see
that for N, = 20 and 50, near and distant light can
clearly be separated using a threshold of 4 - 10* while
for N,, = 5 the blue histogram of near light extends well
beyond 4-10* and thus cannot be discerned from distant
light. Based on this, we set the threshold to 4 - 10* and
suggest working with IV, > 20 target poses. As already
discussed, we recommend increasing NN, as the primary
way of error reduction. 20-50 poses are captured rather
quickly.

5.2 Real-world experiments

We created 4 real-world environments, see Fig. 13. In
all experiments we calibrated the intrinsic camera pa-
rameters beforehand and removed lens distortions.
Environments E1 and E2 have near light, and E3
and E4 have distant light. In E1 we fixed four LEDs to
positions around the camera with a 3D printed frame
and calculated the LED’s ground truth locations from
the frame geometry. We used a FLIR FL2G-13S2C-C
camera with a resolution of 1280x960. In E2 we sep-
arately calibrated two smartphones (Sony Xperia XZ1
and Huawei P9) to potentially open up the path for
inexpensive, end user-oriented physics-based modeling
with phones. Both phones have a 1920x1080 px cam-
era and an LED light. We assumed that LED and cam-
era are in a plane orthogonal to the camera axis and
through the optical center, and measured the distance
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Fig. 9 Estimation error for synthetic near and distant light with Gaussian noise added to the shadow positions. Each data
point is the median of 500 random trials. Top row: N, = 10 and N. = 5. The noise’s standard deviation ¢ is on the x-axis.
Middle row: Np = 5 and N, is on the x-axis. Bottom row: N. = 5 and N, is on the x-axis.

between LED and camera to obtain the ground truth.
In E3 we placed the target under direct sun light and
took datasets at three different times to obtain three
light directions. In E4 a floodlight was fixed about 3m
away from the target to approximate distant lighting. In
both E3 and E4 we used a Canon EOS 5D Mark IV with
a 35 mm single-focus lens and a resolution of 6720x4480
and obtained the ground truth light directions from
measured shadow caster positions and hand-annotated
shadow positions. In all environments, we used an A5-
sized calibration target with N, = 5 pins.

Table 3 shows the achieved estimation results. The
light position errors are 1.5 % of the target-camera dis-
tance for E1 and 1.2 % for E2, the light direction errors
are ~1°, and the caster position errors are < 2.5mm.
Figure 14 shows how increasing the number of target
poses monotonously decreases the estimation error on
two of our real-world scenes.

Table 3 Estimation errors in our four real-world scenes. Per-
centages in the mean light error are relative errors compared
to the target-to-camera distance.

Scene number of light error caster error
experiments mean (relative) std. deviation| mean std. deviation
E1 4 lights 7.7mm (1.5%) 1.1mm 1.1mm 0.46 mm
E2 2 phones 3.7mm (1.2%) 0.27mm  |0.87mm  0.39mm
E3 3 sun positions 1.2deg. 0.42 deg. 1.4mm 0.42 mm
E4 1 light 0.88 deg. - 2.4mm 0.48 mm

5.3 Fundamental shadow matrix vs. shadow tritensor

We now analyze the shadow correspondence search and
verification based on fundamental shadow matrices and
trifocal shadow tensors described in Sec. 4.3. We picked
200 images from E1-1 and obtained ground truth cor-
respondences through video tracking. The fundamen-
tal matrix-based method returned correspondences for
145 images of which 143 were correct and the tritensor-
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Fig. 10 Estimation error for synthetic near and distant light with Gaussian noise added to the target orientation (in deg.).
Each data point is the median of 500 random trials. Top row: Np =10 and N.= 5. The noise’s standard deviation o is on the
x-axis. Middle row: N, =5 and N, is on the x-axis. Bottom row: N. = 5 and N, is on the x-axis.

based method returned 152 images of which 151 were
correct. Thus, the found correspondences are almost
perfect (because we chose all consistency check crite-
ria and parameters to be rather strict to discard a
lot of frames and prefer to capture more frames in-
stead), the number of matched images was by far suf-
ficient for the subsequent calibration steps, and both
consistency check methods performed almost identical.
Note that we cannot deduce from this that fundamen-
tal shadow matrices and shadow tritensors themselves
perform equally, because they are embedded in different
consistency checks. We prefer working with fundamen-
tal matrices because their correspondence search runs
an order of magnitude faster.

In certain situations users may, however, prefer tri-
tensors over fundamental matrices or vice versa: The
tritensor restricts the positions of shadows more and
thus works well if the shadow detector detects the cor-

rect shadow but also has misdetections in the correct
shadow’s vicinity. The tritensor can rule out almost all
of those misdetections. If there are no misdetections but
the correct shadow’s detected position has large noise,
the tritensor may be too unforgiving and a user may
prefer the fundamental matrix instead.

5.4 Estimating multiple lights simultaneously

Capturing and estimating E1’s two top lights (reliably
detecting shadows of more than two lights requires a
better detector) simultaneously as described in Sec. 4.5
reduces the mean light and caster position errors from
6.9mm and 1.1 mm to 5.1 mm and 0.6 mm, respectively.

As mentioned, we can also jointly calibrate lights
whose image sets were captured separately, as long as
they were all captured with the same calibration tar-
get. This necessitates the use of fundamental shadow
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Fig. 11 Estimation error for synthetic near and distant light
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we performed 500 random trials. Top row: The median of the
absolute error (near light) / angular error in degrees (distant
light). Bottom row: The error’s standard deviation.
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matrices / shadow tritensors since there is (currently)
no other method for matching shadows across image
sets. For E1, joint calibration decreased the errors as
shown in Tab. 4.

We can even jointly estimate nearby and distant
light that was captured separately. We put the data

Table 4 Average estimation errors (all units in mm) in scene
E1l for 2, 3, and 4 lights captured separately and calibrated
separately or simultaneously.

number librati light error caster error

of lights calibration mean stdev. mean stdev.
2 separately 6.91 0.20 1.13 0.51
2 simultaneously | 6.29 1.23 0.79 0.25
3 separately 7.11 0.33 1.18 0.47
3 simultaneously 5.2 0.54 1.03 0.29
4 separately 7.72 1.09 1.10 0.46
4 simultaneously | 7.40 0.58 1.06 0.30

Table 5 Estimation error in scene E1 (averaged over El’s 4
lights) for Ours and Shen.

mean of stdev. of
Method light error light error
Ours, shadows hand-annotated 9.45 mm 1.06 mm
Ours, shadows detected 15.4 mm 7.45 mm
Shen, highlights hand-annotated 18.6 mm 5.33 mm

from nearby and distant light separately through the
convex relaxation, run bundle adjustment on them sep-
arately, and then run joint bundle adjustment. Pick-
ing one light from E1 and one light from E3, this pro-
cedure reduced the light position and direction errors
and mean caster position error from 7.1 mm, 0.71 deg.
and 1.21 mm to 3.8 mm, 0.53 deg. and 1.15 mm, respec-
tively.

5.5 Comparison with existing method

To put our method’s accuracy into perspective, Acker-
mann et al. [1] achieved accuracies of about 3070 mm
on scenes 2—-3 times as big as ours despite also minimiz-
ing reprojection error (thus being theoretically more
accurate than methods based on simpler triangulation
schemes according to Hartley [17]) with very careful ex-
periment execution. We believe this is at least partially
due to their usage of spheres.

In this section we compare our calibration method
— denoted as Ours — with an existing method. Because
of Ackermann’s achieved accuracy we ruled out spheres
and compared to a reimplementation of a state-of-the-
art method based on a planar mirror [35] — denoted
as Shen. Their method observes the specular reflec-
tion of the point light in the mirror, also models the
mirror with perspective projection and infers parame-
ters similar to camera calibration. In our implementa-
tion of Shen we again used ArUco markers to obtain
the mirror’s pose and we annotated the highlight po-
sitions manually. For a fair comparison we also anno-
tated the shadow positions for our method manually.
For all hand annotations, we zoomed in on the spec-
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Fig. 13 Our real-world environments. E1 has 4 LEDs fixed around the camera. In E2 we use a smartphone’s camera and LED.
In E3 we observe the target under sun light. E4 has a floodlight fixed about 3 m away from the target.
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Fig. 14 Estimation error for the first light of scene E1 and
for scene E4. For each scene we captured 200 images, ran-
domly picked N, images from these, and estimated the light
and caster positions. The gray bars and error bars represent
median and interquartile range of 100 random iterations of
this procedure.

ular/shadow area of an image and carefully picked up
the specularity’s/shadow’s centroid.

In both methods we used an A4-sized target and ob-
served the target while varying its pose ~ 500 mm away
from the light source. We captured 30 poses for each
method and annotated the shadows/reflections. Table 5
shows the estimation error of light source positions for
Ours and Shen in scene E1. Qurs with hand-annotated
shadows as well as detected shadows outperforms Shen
with annotated highlights.

6 Conclusions

Theoretic contributions: In this paper we explored the
connections between point lights and pinhole cameras:
Single view shadow projection from point lights follows
the same principles as pinhole camera projection but
with more specialized projection matrices. We devised
a unified light model that smoothly interpolates be-
tween projection from a nearby light and distant light
and thereby spares users having to choose between light
models. As a consequence of point lights behaving like
pinhole cameras, we saw that multi-view shadow corre-
spondences follow the principles of epipolar geometry.
Their fundamental matrices, trifocal and quadrifocal
tensors have specialized shapes that allow estimating
them from as few as 2 correspondences, and there is no
general degeneracy in estimating fundamental shadow

matrices from coplanar scene points. Shadow matri-
ces/tensors allow us to establish point correspondences
from unstructured sets of images without the use of
tracking or feature matching. We further saw, that point
lights and shadow caster positions can be simultane-
ously estimated using structure from motion and bun-
dle adjustment.

We want to add a thought on calibration target de-
sign: Ackermann [1] pointed out that, analogous to the
large depth uncertainty in narrow-baseline stereo, nar-
row baseline calibration targets such as Powell’s [28]
have a large light position uncertainty along the light
direction. This can be decreased by either building a
static wide-baseline calibration target, or by moving the
target in the scene as we do. So, again our method is
strongly connected to SfM where camera movement is
key to reducing depth uncertainty.

Ezperimental results: Our noise-free simulation exper-
iments showed that our formulation is correct and the
solution method derives accurate estimates with neg-
ligible numerical errors. Thus, the solution quality is
rather governed by the inaccuracy of target pose esti-
mation and shadow detection. We showed on synthetic
and real-world scenes that even with these inaccura-
cies our method accurately estimates light source po-
sitions/directions with measurements from a sufficient
number of shadow casters and (more importantly) tar-
get poses, which can easily be collected by moving the
proposed calibration target in front of the camera. Fur-
ther, we showed that we can increase the calibration
accuracy by estimating multiple lights simultaneously.
Regarding the choice between fundamental shadow ma-
trices and trifocal shadow tensors, we saw that both
yield approximately equally accurate results.

A comparison with a state-of-the-art method based
on highlights on a mirror plane showed our method’s
superior accuracy. We believe the reason lies in our pin
shadows’ accurate localizability. As discussed in Sec. 2,
highlights are hard to localize accurately. In contrast,
our pin shadows do not “bleed” into their neighborhood
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Fig. 15 (a) With a small baseline between camera and light,
the caster may occlude the shadow as seen from the camera.
(b) To solve this, we use a smaller shadow caster, bring the
target closer to the camera and make the target smaller so
the camera can capture it fully.

and we can easily control their size through the pin head
size. If higher localization accuracy is required, one can
choose pins smaller than ours.

Practical implications: In contrast to related work, our
method requires no tedious, error-prone hand annota-
tions of, e.g., sphere outlines, no precisely fabricated
objects such as precise spheres, and no precise mea-
surements of, e.g., sphere positions. Users need not even
choose between the two different light models (nearby
and distant) since our calibration method infers this
automatically. Further, shadow matrices/tensors even
allow unstructured image sets and not just videos to
be used as input for the calibration. The construction
of our calibration target is simple, fast and cheap and
most calibration steps (e.g., target pose estimation and
shadow detection/matching) run automatically. The on-
ly manual interaction — capturing images or a video
while moving the target — is simple. To our knowledge
no other method combines such simplicity and accu-
racy.

Limitations: Our method cannot be used for scenes
where light and camera are so close together that the
caster occludes the image of the shadow (see Fig. 15(a)).
The solution is to effectively increase the baseline be-
tween camera and light by using a smaller target and
bringing it closer to the camera, as shown in Fig. 15(b).

Future work: It may be possible to alleviate the oc-
clusion problem above with a shadow detection that
handles partial occlusions. Further, we want to analyze
degenerate cases where our equations are rank deficient,
e.g., a target with one caster being moved such that its
shadow stays on the same spot.

The source code for this project can be downloaded
from: github.com/hiroaki-santo/light-structure-
from-pin-motion
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Fig. A.1 Left: The quadrifocal tensor Q. Right: The equation system whose solution gives the parameters q1,...,q1s of Q.
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