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Multiview Rectification of Folded Documents
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Abstract—Digitally unwrapping images of paper sheets is crucial for accurate document scanning and text recognition. This
paper presents a method for automatically rectifying curved or folded paper sheets from a few images captured from multiple
viewpoints. Prior methods either need expensive 3D scanners or model deformable surfaces using over-simplified parametric
representations. In contrast, our method uses regular images and is based on general developable surface models that can
represent a wide variety of paper deformations. Our main contribution is a new robust rectification method based on ridge-aware
3D reconstruction of a paper sheet and unwrapping the reconstructed surface using properties of developable surfaces via `1
conformal mapping. We present results on several examples including book pages, folded letters and shopping receipts.

Index Terms—Robust digitally unwarpping, ridge-aware surface reconstruction, mobile phone friendly algorithms
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1 INTRODUCTION

Digitally scanning paper documents for sharing and
editing is becoming a common daily task. Such pa-
per sheets are often curved or folded, and proper
rectification is important for high-fidelity digitization
and text recognition. Flatbed scanners allow physical
rectification of such documents but are not suitable
for hardcover books. For a wider applicability of
document scanning, it is wanted a flexible technique
for digitally rectifying folded documents.

There are two major challenges in document image
rectification. First, for a proper rectification, the 3D
shape of curved and folded paper sheets must be
estimated. Second, the estimated surface must be flat-
tened without introducing distortions. Prior methods
for 3D reconstruction of curved paper sheets either
use specialized hardware [1], [2], [3] or assume sim-
plified parametric shapes [4], [5], [6], [7], [8], [9], [2],
such as generalized cylinders (Fig. 2a). However, these
methods are difficult to use due to bulky hardware or
make restrictive assumptions about the deformations
of the paper sheet.

In this paper, we present a convenient method for
digitally rectifying heavily curved and folded paper
sheets from a few uncalibrated images captured with
a hand-held camera from multiple viewpoint. Our
method uses structure from motion (SfM) to recover
an initial sparse 3D point cloud from the uncalibrated
images. To accurately recover the dense 3D shape
of paper sheet without losing high-frequency struc-
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tures such as folds and creases, we develop a ridge-
aware surface reconstruction method. Furthermore, to
achieve robustness to outliers present in the sparse
SfM 3D point cloud caused by repetitive document
textures, we pose the surface reconstruction task as
a robust Poisson surface reconstruction based on `1
optimization. Next, to unwrap the reconstructed sur-
face, we propose a robust conformal mapping method
by incorporating ridge-awareness priors and `1 opti-
mization technique. See Fig. 1 for an overview.

The contributions of our work are threefold. First,
we show how ridge-aware regularization can be used
for both 3D surface reconstruction and flattening (con-
formal mapping) to improve accuracy. Our ridge-
aware reconstruction method preserves the sharp
structure of folds and creases. Ridge-awareness pri-
ors act as non-local regularizers that reduce global
distortions during the surface flattening step. Second,
we extend the Poisson surface reconstruction [10]
and least-squares conformal mapping (LSCM) [11]
algorithms by explicitly dealing with outliers using `1
optimization. Finally, we describe a practical system
for rectifying curved and folded documents that can
be used with ordinary digital cameras.

2 RELATED WORK

The topic of digital rectification of curved and folded
documents has been actively studied in both the com-
puter vision and document processing communities.
It is common to model paper sheets as developable
surfaces which have underlying rulers corresponding
to lines with zero Gaussian curvature. Many exist-
ing methods assume generalized cylindrical surfaces
where the paper is curved only in one direction
and thus can be parameterized using a 1D smooth
function. Such surfaces do not require an explicit
parameterization of the rulers. See Fig. 2a for an
example. A variety of existing techniques recover
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(a) Multi-view images (e) Dewarp 

Dewarp 

(b) Structure from motion (c) Ridge-aware reconstruction (d) Robust unwrapping 

Fig. 1. Our technique recovers a ridge-aware 3D reconstruction of the document surface from a sparse 3D point cloud. The
final rectified image is then obtained via robust conformal mapping.

(a) Generalized  

cylindrical surface  

(b) Cylinder-like 

developable surface 

(c) General  

developable surface 

Fig. 2. Developable surfaces with underlying rulers (lines
with zero Gaussian curvature) and fold lines (ridges) shown
as dotted and solids lines respectively. Examples of (a)
smooth parallel rulers, (b) smooth rulers not parallel to each
other and (c) rulers and ridges in arbitrary directions.

surface geometry using this assumption. Shape from
shading methods were first used by Wada et al. [4],
Tan et al. [12], [13], Courteille et al. [14] and Zhang et
al. [5] whereas shape from boundary methods were
explored by Tsoi et al. [15], [6]. Binocular stereo match-
ing with calibrated cameras was used by Yamashita et
al. [16], Koo et al. [7] and Tsoi et al. [6]. Shape from text
lines is another popular method for reconstructing
the document surface geometry [17], [12], [18], [19],
[20], [21], [8], [22], [9], [23], [24], [25]. However, these
methods assume that the document contains well-
formatted printed characters.

Some recent methods relax the parallel ruler as-
sumption (see Fig. 2b). However, the numerous pa-
rameters in these models makes the optimization
quite challenging. Liang et al. [26] and Tian et al. [27]
use text lines. Although these methods can handle a
single input image, the strong assumptions on surface
geometry, contents and illumination limit the applica-
bility. Meng et al.designed a special calibrated active
structural light device to retrieve the two parallel
1D curvatures [2], the surface can be parameterized
by assuming appropriate boundary conditions and
constraints on ruler orientations. Perriollat et al.[28]
use sparse SfM points but assume they are reasonably
dense and well distributed. Their parameterization is
sensitive to noise and can be unreliable when the 3d
point cloud is sparse or has varying density.

For rectification of documents with arbitrary distor-
tion and content (Fig. 2c), other methods require spe-
cialized devices and use non-parametric approaches.

Brown et al. [3] use a calibrated mirror system to
obtain 3D geometry using multi-view stereo. They
unwrap the reconstructed surface using constraints
on elastic energy, gravity and collision. The model is
not ideal for paper documents because developable
surfaces are not elastic. Later, they propose using
dense 3D range data [29] after which they flatten the
surface using least square conformal mapping [11].
Zhang et al. [30] also use dense range scans and use
rigid constraints instead of elastic constraints with
the method proposed in [3]. Pilu [1] assumes that
a dense 3D mesh is available and minimizes the
global bending potential energy to flatten the surface.
None of these existing methods are as practical and
convenient as our method that only requires a hand-
held camera and a few images.

3 PROPOSED METHOD
Our method has two main steps – 3D document
surface reconstruction and unwrapping of the recon-
structed surface. For now, we assume that a set of
sparse 3D points on the surface are available. Next, we
describe our new algorithms for ridge-aware surface
reconstruction and robust surface unwrapping.

3.1 Ridge-aware surface reconstruction
Dense methods are favored for 3D scanning of folded
and curved documents [31], [32]. This is because exist-
ing methods for surface reconstruction from sparse 3D
points tend to produce excessive smoothing and fail
to preserve sharp creases and folds, i.e., ridges on the
surface. Such methods are typically also inadequate
for dealing with noisy 3D points caused by repeti-
tive textures present in documents. We address these
issues by developing a robust ridge-aware surface
reconstruction method for sparse 3D points. Specif-
ically, we extend the Poisson surface reconstruction
method [10] by incorporating ridge constraints and
by adding robustness to outliers.
Robust Poisson surface reconstruction. We denote
a set of N sparse 3D points obtained from SfM
as {x̂n, ŷn, ẑn}, n = 1, 2, · · · , N , where only 3D points
triangulated from at least three images are retained.
For our input images, N typically lies between 700 to
2000. For a selected reference image (and viewpoint),
we use a depth map parameterization z(x, y) for the
document surface. We aim to estimate depth at the
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(a) Input (b) Robust Poisson reconstruction 

(c) Ridge candidates (d) Ridge-aware reconstruction 

Fig. 3. Example of ridge-aware 3D surface reconstruction.

mesh grid vertices zi(xi, yi), where i is the mesh
grid index, 1 ≤ i ≤ I . Our method computes the
optimal depth values z∗ = [z1, . . . , zI ]

> by solving the
following optimization problem.

z∗ = argmin
z

Ed(z) + λEs(z). (1)

Here, Ed and Es are the data and smoothness terms
respectively and λ is a parameter to balance the
two terms. The original Poisson surface reconstruction
method uses the squared `2-norm for both terms.
Instead, we propose using the `1-norm for the data
term Ed to deal with outliers.

Ed(z) =
∑
n

‖ẑn − zi‖1. (2)

This encourages the estimated depth zi to be consis-
tent with ẑn, the observed depth of the nearest 3D
point.

We rewrite Eq. (2) in vector form.
Ed(z) = ‖ẑ− PΩz‖1, (3)

where PΩ is a permutation matrix that selects and
aligns observed entries Ω by ensuring correspondence
between ẑn and zi. The smoothness term Es is defined
using the squared Frobenius norm of the gradient of
depth vector z along x and y in camera coordinates.

Es(z) = ‖∇2z‖2F =

∥∥∥∥[∂2z

∂x2
,
∂2z

∂y2

]∥∥∥∥2

F

. (4)

By preparing a sparse derivative matrix D that
replaces the Laplace operator ∇2 in a linear form,

D =


di,j =


2 if i = j

−1 if zj is left/right to zi
0 otherwise

di+I,j =


2 if i = j

−1 zj is above/below zi
0 otherwise


2I×I

, (5)

we have a special form of the Lasso problem [33].
z∗ = argmin

z
‖ẑ− PΩz‖1 + λ‖Dz‖22. (6)

While this problem (Eq. (6)) does not have a
closed form solution, we use a variant of iteratively
reweighted least squares (IRLS) [34] for deriving the
solution. By rewriting the data terms in Eq. (6) as a
weighted `2 norm using a diagonal matrix W with
positive values on the diagonal, we have

z∗=argmin
z

(ẑ− PΩz)
>
W>W (ẑ− PΩz) + λz>D>Dz. (7)

In contrast to Equation (6), the data term now uses
`2 norm instead of `1 norm. We solve this problem
(Equation (7)) using alternation as described next.

Step 1: Update z
Eq. (7) can be rewritten as z∗ = argminz ‖ Az− b ‖22,

where A =

[
WPΩ√
λD

]
and b =

[
Wẑ
02I×1

]
and 02I×1 is

a zero vector of length 2I . This is a squared `2 sparse
linear system. It has the closed form solution

z∗ = [A>A + αI]−1A>b, (8)

where I is the identity matrix, α is a regularization
parameter (we use α = 1.0e-8).

Step 2: Update W
We initialize W to the identity matrix. During each
iteration, each diagonal element wi of W is updated
given the residual r = WPΩz

∗ −Wb, as follows.

wi =
1

|ri|+ ε
, (9)

Here, ri is the i-th element of r and ε is a small positive
value (we use ε = 1.0e-8). These steps are repeated
until convergence; namely, until the estimate at t-th
iteration z∗(t) becomes similar to the previous estimate
z∗(t−1), i.e., ‖z∗(t)−z∗(t−1)‖2 < 1.0e-8. Figure 3.b shows
an example of the reconstructed mesh.

Ridge-aware reconstruction. Developable surfaces
are ruled [35], i.e., contain straight lines on the surface
as shown in Fig. 2. Our method exploits this geometric
property as described in this section. Unlike existing
parameterization-based methods which only handle
smooth rulers, [26], [27], [2], [28], extracting arbitrary
creases and ridges is more difficult when only sparse
3D points are available. In particular, the sparse SfM
points can be quite noisy. We propose a sequential
approach by first detecting ridges on the mesh z∗

that was obtained using our robust Poisson recon-
struction method. After selecting the ridge candidates,
we instantiate additional linear ridge constraints and
incorporate them into the linear system that was
solved earlier. This sequential approach is quite gen-
eral and avoids overfitting. It also avoids spurious
ridge candidates arising due to noise.

For each point z(x, y) on the mesh z∗, we compute
the Hessian K as follows.

K(z) =

[
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂x∂y

∂2z
∂y2

]
. (10)
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Based on the following Eigen decomposition of K(z),

K(z) = [p1,p2]

[
κ1 0
0 κ2

]
[p1,p2]

>
, (11)

we obtain principal curvatures κ1 and κ2 (|κ1| ≤ |κ2|)
and the corresponding eigenvectors p1 and p2.

The value of κ1 is equal to zero at all points on a
developable surface. Thus, at any point zi, a straight
line along direction p1 must lie on the surface. As
discussed earlier and shown in Fig. 2, the curvature
along the ridge is zero while the curvature orthogonal
to the ridge reaches a local extremum. We use this
observation to select ridge candidates using the value
of |κ2|. Mesh points zi(xi, yi) with |κ2(i)| greater than
the threshold κth are selected as ridge candidates. (see
Figure 3c for an example). The associated smoothness
constraints in Eq. (4) are adjusted as follows.

d̃i,j = ϕ(〈p1, e1〉)di,j
d̃i+I,j = ϕ(〈p1, e2〉)di+1,j ,

(12)

where 〈 , 〉 is the inner product and e1 = [1, 0]>, e2 =
[0, 1]> are orthonormal bases. ϕ(·) is a convex mono-
tonic function defined as ϕ(x) = βx2

−1
β−1 , which places

a greater weight β � 1 along the ridge and smaller
weight orthogonal to it. We also consider two more
directional smoothness constraints similar to those
stated in Eq. (12), for the two diagonal directions
e3 = [

√
2

2 ,
√

2
2 ]> and e4 = [

√
2

2 ,−
√

2
2 ]>.

Finally, we modify Es(z) defined in Eq. (4) by
adding these ridge constraints and solve a new sparse
linear system (similar to the earlier one) to obtain the
final reconstruction. Figure 3d shows that this method
can preserve accurate folds and creases.

3.2 Surface Unwrapping

Given the 3D surface reconstruction, our next step
is to unwrap the surface. We take a conformal map-
ping approach to this problem, amongst which, Least
Squares Conformal Mapping (LSCM) [11], [29] is a
suitable choice. However, it is not resilient to the pres-
ence of outliers and susceptible to global distortion
which can occur due to the absence of long-range
constraints. We address both these issues and extend
LSCM by incorporating an appropriate robustifier as
well as ridge constraints to reduce global drift.
Conformal Mapping. For our mesh topology, each 3D
point zi(xi, yi), i = 1, . . . , I , on the grid on z forms
two triangles, one with its upper and left neighbor,
the other with its lower and right neighbor on the
grid. The triangulated 3D mesh is denoted as {T , z}.
A conformal map will produce an associated 2D
mesh with the same connectivity but with 2D vertex
positions such that the angle of all the triangles are
best preserved. We denote the 2D mesh as {T ,u},
where u = (ui, vi).

For a particular 3D triangle t with vertices at
(x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), we seek its

Obtain local basis:
𝐀 = 𝑥3, 𝑦3, 𝑧3 − 𝑥1, 𝑦1, 𝑧1
𝐁 = 𝑥2, 𝑦2, 𝑧2 − 𝑥1, 𝑦1, 𝑧1
𝐍 = 𝐀 × 𝐁/ 𝐀 × 𝐁
𝐗 = 𝐀/ 𝐀
𝐘 = 𝐍 × 𝐗

𝑥1, 𝑦1, 𝑧1

𝐗

𝐘
𝐍

𝐀

𝐁

Coordinates in local basis
(𝑋1, 𝑌1) = (0, 0)
(𝑋2, 𝑌2) = (𝐁 ⋅ 𝐗, 𝐁 ⋅ 𝐘)
(𝑋3, 𝑌3) = (𝐀 ⋅ 𝐗, 0)

𝑥3, 𝑦3, 𝑧3

𝑥2, 𝑦2, 𝑧2

Fig. 4. Vertices of a triangle in a local coordinate basis.

associated 2D vertex positions ((u1, v1), (u2, v2) and
(u3, v3)) under the conformal map. Using a local 2D
coordinate basis for triangle t, the conformality con-
straint is captured by the following linear equations.

1

S

[
∆X1 ∆X2 ∆X3 −∆Y1 −∆Y2 −∆Y3
∆Y1 ∆Y2 ∆Y3 ∆X1 ∆X2 ∆X3

]
ut = 0, (13)

Here, ut = [u1, u2, u3, v1, v2, v3]>, S is the area
of t, ∆X1 = (X3 −X2), ∆X2 = (X1 −X3) and
∆X3 = (X2 −X1) (∆Y is similarly defined). Note
that variables (X1, Y1), (X2, Y2), and (X3, Y3) were
obtained from t’s vertex coordinates (see Fig. 4).
Putting together the constraints for all the triangles,
we have the following sparse linear system.

Cu = 0. (14)

Using indices i and j to index the I vertices and
J triangles respectively, the 2J × 2I matrix C in
Equation (14) has the following non-zero entries.

cj,i = ∆X
Sj
, cj,i+I = −∆Y

Sj

cj+J,i = ∆Y
Sj
, cj+J,i+I = ∆X

Sj

(15)

Ridge constraints. Notice that the original confor-
mal mapping has only local constraints, which will
result in global distortion, Fig. 5.f. To reduce global
distortions during unwrapping, we add ridge and
boundary constraints to constrain the solution further.

We take into consideration two facts. First, the
ridge lines remain straight after flattening but should
essentially become invisible on the flattened surface.
Second, the conformal mapping constraint Eq. (13)
applies to beyond triangles. In particular, it is true for
three collinear points. Therefore, we propose using the
collinearity property to derive non-local constraints
during flattening. and add it to our conformal map
estimation problem. Referring to Fig. 4, and imagine
the collinear case, that is when point (x2, y2, z2) is also
lying on the X axis; in such case, Y2 = Y1 = Y3 = 0.
In addition, the area of the triangle T is zero. Hence,
the ridge constraints can be written in a form similar
to Eq. (13).[

∆X1 ∆X2 ∆X3 0 0 0
0 0 0 ∆X1 ∆X2 ∆X3

]
uR = 0. (16)
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(a) RA (ours) + L1 (ours) (b) RA (ours) + Geo (c) RA (ours) + L2

(d) Po + L1(ours) (e) Po + Geo (f) Po + L2

Fig. 5. Rectification results from combination of meth-
ods. Acronyms RA and Po denote our ridge-aware method
and Poisson reconstruction respectively. L1 denotes our `1
conformal mapping method with non-local constraints; L2
indicates LSCM [29] and Geo indicates geodesic unwrap-
ping [30].

where uR = [u1, u2, u3, v1, v2, v3]> are the targeted 2D
coordinates similarly defined as ut. We select ridge
candidates in the same way as we did earlier during
reconstruction. However, this step is now more accu-
rate because the surface is well reconstructed. For each
ridge candidate (vertex), we find two farthest ridge
candidates along the ridge line in opposite directions
and instantiate the above mentioned constraint for
the three points. We assume that the boundary of
the flattened 2D document image has straight line
segments (they need not be straight lines on the 3D
surface). These boundary constraints can be expressed
in a form similar to Eq. (16). We incorporate all
ridge and boundary constraints into a system of linear
equations.

Ru = 0. (17)

Robust conformal mapping. We propose using an
`1 norm instead of the standard squared `2 norm to
make conformal mapping robust to outliers. Putting
together Eqs. (14) and (17) in the `1 sense, we have

u∗ = argmin
u

‖ Cu ‖1 +γ ‖ Ru ‖1, (18)

where γ balances the ridge and boundary constraints.
To avoid the trivial solution u = 0, we fix two
points of u to (ui, vi) = (0, 0) and (uj , vj) = (0, 1).
Equation (18) is then rewritten as

u∗ = argmin
u

‖ Cu ‖1 +γ ‖ Ru ‖1 +θ ‖ Efix ‖22, (19)

where Efix is the energy function for the two fixed
points. We solve the objective function using the

iterative reweighted least squares method [34]. Fig-
ure 5 shows a result from the conventional LSCM (`2
method) and our proposed `1 method.

3.3 Implementation details
Sparse 3D reconstruction. We recover the initial
sparse 3D point cloud using SfM. While any exist-
ing SfM method is applicable, we use the popular
incremental SfM technique et al. [36] in our system.
We typically capture five to ten still images for each
document from different viewpoints. Capturing these
images or equivalently a set of burst photos or a short
video clip only takes a few seconds. After running
SfM, we segment the document from the background
surface in the reference image using a simple method
based on color difference and edge detection. In our
experiments, we assumed that the document has a
sufficiently different color from the background and
therefore the document boundary is visible with suffi-
cient contrast. Figure 1a shows an input example and
the corresponding reconstruction.
Image warping. After recovering the flattened mesh
grid u = {ui, vi}, we unwrap the input image with
the maximum document area in pixels. To obtain
correspondence between the input image and {ui, vi},
we project the 3D mesh points {zi(xi, yi)} into the
image to obtain image coordinates {x̃i, ỹi} using the
camera pose estimated using SfM. We then warp
the image according to the correspondence between
{x̃i, ỹi} and {ui, vi} with bilinear interpolation.

4 EXPERIMENTS

We perform qualitative and quantitative evaluation
on a wide variety of input documents. The first set
of experiments show that our method can handle
different paper types, document content and various
types of folds and creases. Next, we report a quanti-
tative evaluation based on known ground truth using
local and global metrics where we demonstrate the
superior performance and advantages of our method
over existing methods [29], [30], [28]. In all the experi-
ments, we set parameters as follows: λ = 1e-5, β = 40,
γ = 1e3, θ = 1e2 and κth = 0.006. Our method
is insensitive to these parameters. Varying λ, γ, θ by
factors of 0.1 – 1.0 or varying β or κth by 50% from
these settings did not change the result significantly.

4.1 Test Data
The first six out of the 12 test sequences (I – VI) con-
tain documents with no fold lines, one fold line, two
to three parallel fold lines, and two to three crossing
fold lines respectively. The other six sequences (VII
– XII) contain documents with an increasing number
of fold lines. Irregular fold lines were intentionally
added to make the rectification more challenging.
All documents were either placed on a planar or
curved background surface. Sequence VII contains a
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I II III IV V VI 

VII VIII IX X XI XII 

Fig. 6. [OUR RESULTS] Original images are shown in rows 1 and 3 and our rectification results are shown in rows 2 and 4.

shopping receipt on a paper roll whereas II and VIII
contain pages from a book. Sequences III, IV, IX and
X contain letters folded within envelopes. Sequence V,
VI, XI and XII contain examples of documents folded
inside a purse or notebook. The input images as well
as the results from our method are shown in Fig. 6.
Our method does not rely on the content, formatting,
layout or color of the document. Thus, it is generally
applicable as long as a sufficient number of sparse
keypoints in the input images are available for SfM.

4.2 Quantitative Evaluation Metrics

We quantitatively evaluate the global and local dis-
tortion between the ground truth digital image and
our rectified result using local and global metrics. The
digital version of six out of the 12 test documents were
available. We treat those images as ground truth and
resize them by setting their height to 1000 pixels.

Global distortion metric. We first register the rectified
image to the ground truth by estimating a global
affine transform T estimated using SIFT keypoint
correspondences in these images [37].

T =

[
a1 a2 t1
a3 a4 t2
0 0 s

]
, (20)

This is achieved by minimizing the squared error.

T∗ = argmin
T

‖ Tp− p̂ ‖22 . (21)

where, p and p̂ denote corresponding 2D keypoint po-
sitions using homogenous coordinates. We compute
the global distortion metric G as follows.

G = (a1a4 − a2a3)/s2

G = max (G, 1/G).
(22)

A perfect result has G = 1; and larger values indicate
more distortion (see comparative results in Fig. 7).
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Local distortion evaluation metric
Fig. 7. Distortion metrics for datasets shown in Fig. 6.
Abbreviations are consistent with Fig. 5 and the text.
Local distortion metric. After warping the rectified
image with the affine transform T, we have removed
the global distortion as well as the scaling, rotation,
and translation of the rectified image. After that,
we further evaluate the remaining local distortion.
We register the resulting image with the ground
truth using SIFT-flow [38] for dense registration. This
flow map is used to compute the local distortion
metric which cannot be removed by global affine
warping. The frequency distribution of local dis-
placements are shown in lower figure in Fig. 7 and
compared with existing methods. We found dense
registration to be more useful for an unbiased evalua-
tion than sparse SIFT keypoint-based registration be-
cause sparse methods are more likely to ignore many
matches if the result contains large deformations.

4.3 Comparison with existing methods
We first compare with three methods [28], [29], [30]
on various real images and then use synthetically
generated data to further compare with the methods
designed for dense 3D point data [29], [30].

Perriollat et al. [28]. Their method explicitly parame-
terizes smooth rulers but cannot handle our document
images with creases and folds. Our method works fine
on their dataset and produces a more accurate result
than the one obtained by running their code 1 (see
Fig. 8). Although our result has minor artifacts due
to self-occlusion and fore-shortening, the flattening
result is quite accurate.

1. Their result shown here was generated by the original code
provided by the authors. These result do not agree with the results
in their paper. This is probably due to a difference in initialization.

Input Mesh (Perriollat) 

Dewarp (Perriollat) 

Mesh (proposed) 

Dewarp (proposed) 
Fig. 8. Comparison with Periollat et al.’s method [28].

Brown et al. [29], Zhang et al. [30]. We compare
to both methods using our sequences where ground
truth is available (Fig. 6). Since they require 3D range
data, we use our reconstructed surface as their in-
put and compare the surface flattening quality. We
also compare our ridge-aware reconstruction to the
standard Poisson reconstruction method. As shown
in Fig. 7, the global and local distortion metrics intro-
duced earlier are used in the evaluation. Our method
has higher accuracy in terms of both metrics. Results
from various methods have been compared in Fig. 5.
Evaluation on synthetic data. We compared our
method with [29], [30] on synthetically generated
dense 3D points because these methods require dense
3D points. We vary the point cloud size from 2K to
300K (common in 3D range data) and inject varying
levels of Gaussian noise. The results from the three
methods are compared in Figure 9. These experiments
show that with low noise and high point density, all
three methods are comparable in accuracy. However,
when the points are sparser or when the noise level
is higher, our method is more accurate than prior
methods [29], [30].

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a method for automati-
cally rectifying curved or folded paper sheets from
a small number of images captured from different
viewpoints. We use SfM to obtain sparse 3D points
from images and propose ridge-aware surface recon-
struction method which utilizes the geometric prop-
erty of developable surface for accurate and dense
3D reconstruction of paper sheets. We also robustify
the algorithms using `1 optimization techniques. After
recovering surface geometry, we unwrap the surface
by adopting conformal mapping with both local and
non-local constraints in a robust estimation frame-
work. In the future we will address the correction
of photometric inconsistencies in the document image
caused by shading under scene illumination.
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Fig. 9. (a) Comparison of the global distortion metric between our method (top) and Zhang et al. [30] and Brown et al.[29]
with varying point density and noise. Here lower values indicate higher accuracy. (b) Frequency distribution of local distortion
metrics for the associated experiments. Our method is more accurate when input point are sparser or have more noise.
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