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Abstract

We present a method for symmetric stereo matching in
which outliers from occlusions, texture-less regions, and re-
peated patterns are handled in a soft and adaptive manner.
Rather than making binary outlier decisions, our model in-
corporates continuous-valued confidence weights that ac-
count for outlier likelihood, to promote robustness in dis-
parity estimation. In contrast to previous outlier labeling
techniques that fix the labels at the start of optimization, our
method iteratively updates our outlier confidence weights
as the matching results are gradually refined. By doing this,
errors in an initial labeling can be rectified in the match-
ing process. Our model is optimized in an Expectation-
Maximization framework that efficiently produces contin-
uous disparity estimates. This approach provides a good
combination of accuracy and speed. Experiments show
that our method compares favorably to prior outlier label-
ing techniques on the Middlebury benchmark, and that it
can generate high-quality reconstruction for outdoor im-
ages with much more complex occlusions.

1. Introduction

Stereo matching is an ill-posed problem with ambiguities
due to occlusion, color homogeneity and repeated textures.
These matching ambiguities, also referred to as outliers, are
commonly dealt with using some form of smoothing or fil-
tering which masks their detrimental effects. For exam-
ple, global optimization approaches incorporate smoothness
regularization into their objective functions to obtain a bet-
ter approximation of disparities in such cases, while local
approaches employ cost aggregation on pixel-based stereo
matching costs. Though these schemes can help to reduce
the impact of this problem to some degree, outliers nev-
ertheless are a major source of error, and addressing them
effectively is essential for high-quality stereo matching.

∗This work was done while Chen Li was an intern at Microsoft Re-
search.

Figure 1. 3D scenes reconstructed by our method.

The issue of outlier handling has been explicitly exam-
ined in some recent works. Most of these methods iden-
tify pixels that are half-occluded (i.e., whose counterpart
in the other image is occluded), and then tag these pixels
with the intent to limit their influence in global optimiza-
tion [26, 17, 25]. In [28], the notion of outlier confidence
is introduced, where a likelihood measure of a pixel half-
occlusion (which we will refer to simply as occlusion) is
used instead of a binary label. By softly incorporating this
information into their matching model, more robust dispar-
ity estimation is achieved. These previous uses of outlier
labeling have led to improvements in estimation accuracy,
but are limited in that the labels are fixed at the beginning
of the optimization process. As a result, incorrectly labeled
pixels, such as occlusions that were mistakenly overlooked,
cannot be rectified in the latter process. Also, pixels ini-
tially considered as outliers are omitted from the optimiza-
tion, even if there exists a correct match for it. The inclusion
of (or high confidence in) actual outliers, combined with
the exclusion of (or low confidence in) pixels that can pro-
vide useful matching data, can lead to degradation of stereo
matching results.

To address this problem, we propose a novel formula-
tion that handles outliers in an adaptive manner, where soft
outlier confidence weights are progressively updated as the
disparity solution is gradually refined. With improvements
in the disparity map, confidence values can evolve, since
disparity inconsistencies between the two images may be
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resolved, and initially missed outliers may become more ap-
parent. We model this soft and adaptive outlier confidence
in terms of left-right disparity consistency and ordering con-
straints. In addition, the adaptive confidence weights are in-
corporated in manner that allows for an efficient solution in
a continuous disparity space, unlike the discrete models of
previous outlier handling works [26, 17, 25, 28].

Optimization of the proposed matching formulation
presents a challenge, since the inclusion of left-right dis-
parity consistency constraints would require a higher order
model in the MRF framework, and solving the matching
problem in a continuous and multi-dimensional disparity
space makes discrete search methods such as graph cuts [6]
and belief propagation [11] unsuitable. To address this
optimization problem, we iteratively update the adaptive
confidence weights and estimate the disparity values in an
Expectation-Maximization (EM) framework. In the maxi-
mization step where we estimate disparity, we approximate
the optimization problem as a linear system from which a
continuous solution can be generated.

With this technique, continuous and symmetric stereo
disparities for the left and right views can be more effi-
ciently and accurately estimated than in previous works that
employ outlier labeling [31, 26, 28]. We demonstrate this
experimentally with good performance on the Middlebury
benchmark [23, 24] and on outdoor images without sub-
stantial computation time. Examples of 3D point clouds
reconstructed by our method are displayed in Fig. 1.

2. Related Work
Stereo matching is a well-studied area in which many

techniques are compared on the Middlebury website [1].
We review methods most closely related to our work.

Recently, outlier and occlusion handling has been ad-
dressed by many researchers. Some methods estimate
which pixels are outliers only at the start of disparity op-
timization. In [29], pixels are labeled as occluded if they
fail a left-right disparity consistency check, and the remain-
ing pixels are labeled as stable or unstable according to the
distinctiveness of their optimal matching energy, as this in-
dicates the stability of the winner-take-all scheme. In [31],
binary confidence weights are computed for the purpose of
excluding overly-texture-less and overly-repetitive pixels.
The method of [28] computes a continuous-valued outlier
confidence map for soft handling of occluded pixels. Since
these methods do not re-evaluate the outlier status of pixels
during disparity optimization, any errors in this initializa-
tion are baked into the result.

There are other occlusion-handling methods that update
their outlier estimates as part of the optimization process.
In [3, 2], a definition of half-occluded regions was intro-
duced, and simple equations were derived for determin-
ing these regions from the disparity function. The method

of [26] solves for an occlusion map and a disparity map in
alternation, where the occlusion map is computed from a
visibility constraint which only requires that an occluded
pixel have no match while a non-occluded pixel have at
least one match. The weakness of this visibility constraint
arises in part from its discrete representation of disparity,
for which left-right disparity consistency does not neces-
sarily hold [26]. In [4], a continuous disparity method is
presented using the Mumford-Shah framework [19]. Oc-
clusion pixels are determined iteratively based on left-right
disparity consistency. In contrast, our method additionally
accounts for ordering constraints and accommodates con-
tinuous outlier weights for non-deterministic soft handling.

A generative method for multi-view stereo is presented
in [25], in which visibility and depth are jointly estimated
in an iterative manner. Within a probabilistic framework,
outliers are detected if they cannot be explained by the ma-
jority of images. This approach, while effective for multi-
view stereo, is less suited to the case of only two images,
which provides limited data for statistical inference. On the
Middlebury benchmark, occlusion regions are shown not to
be effectively handled.

3. Formulation
Our problem setting is similar to that of [27, 31]. Given

a rectified stereo image pair I = {IL, IR}, where IL, IR
are the left and right images, our goal is to estimate dense
disparity maps D = {DL, DR}. We use a conventional
stereo formulation by following previous approaches [23]
and define an objective function E(D), which consists of
a data term Ed and smoothness term Es weighted by the
smoothness weight λs as

E(D) = Ed(D) + λsEs(D). (1)

These two energy terms are described in Secs. 3.1 and 3.2.

3.1. Data Term

Our data termEd encodes the photo-consistency of pixel
correspondence for the hypothesized disparity as

Ed(D; I) =
∑
i∈I

ωiEd(i, di; I), (2)

where ωi is the adaptive weight, which represents the con-
fidence of the disparity estimation di for pixel i.

We select the pixel-based matching cost to be a truncated
absolute difference of the color and the gradient at matching
points, which has been shown to be robust to illumination
changes [21, 7]:

C(i, d; I) = (1− α)min (‖Ii′ − Ii‖, τc)+
αmin (‖∇xIi′ −∇xIi‖, τg). (3)
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Figure 2. Factors for adaptive confidence weights. (a) Left-right
consistency, where matched pixels are expected to have consistent
disparity estimates. (b) Ordering, where the horizontal order of
matches is expected to be consistent between the images.

In the above, Ii ∈ R3 is the RGB color vector for pixel i,
and i′ is the matched pixel of i in the other view with dis-
parity d. ∇xI is the gray-scale gradient in the x-direction,
α balances the color and gradient terms, and τc, τg are trun-
cation values for greater robustness.

We then filter the pixel-wise cost of Eq. (3) using guided
image filtering [14, 21] and define the photo-consistency
term as

Ed(i, di; I) =
∑
j

Wi,jC(j, di; I), (4)

where Wi,j is the filter weight defined in [14].

Adaptive confidence weight ωi Our adaptive confidence
weight is inspired by recent occlusion handling meth-
ods [26] and previous uses of fixed confidence weights for
the data term [28, 31]. In formulating the confidence weight
for a pixel i, we account for two factors that are indicative
of matching accuracy, namely left-right consistency and or-
dering of matches, as illustrated in Figure 2. We define the
confidence weight ωi as the product of their two measures:

ωi = ωdωo, (5)

where ωd is the left-right consistency weight, and ωo is the
ordering weight. Though the values of ωd and ωo typically
vary among pixels, we omit subscript i to simplify notation.

We define the left-right consistency weight ωd as a Gaus-
sian function of the disparity difference between matched
pixels:

ωd = exp

(
−|di − di

′ |2

σd2

)
, (6)

where σd controls the sensitivity to the disparity difference.
The ordering weight ωo is defined as follows. Con-

sider three adjacent pixels il, i, and ir in the left image
with disparities dil , di, dir . If none of these points are oc-
cluded in the other view, the three matched pixels il′, i′,
and ir ′ in the other image should preserve the left-to-right
order [13]. This ordering implies a constraint on their dis-
parities: dil +1 ≥ di ≥ dir − 1. Based on this observation,
we define the ordering weight for the left image as

ωo = mlmr, (7)

where

ml =

{
1.0 if dil + 1 ≥ di
Ts otherwise

(8)

mr =

{
1.0 if di ≥ dir − 1

Ts otherwise.
(9)

The value of Ts is set to be small, such that inconsistent
orderings are penalized. The ordering weight for the right
image is similarly computed by flipping the inequalities.

3.2. Smoothness Term

Like previous approaches, our method uses smoothness
regularization in disparity estimation. Our smoothness term
consists of local and regional smoothness terms, El and Er,
respectively:

Es(D) = El(D) + λrEr(D), (10)

where λr balances the two smoothness terms.

Local smoothness term El This smoothness term is in-
spired by the use of bilateral filtering in adaptive support-
weight stereo cost aggregation [30] and also in the recent
depth upsampling method of [20]. Our local smoothness
term El is defined as

El(D) =
∑
i∈I

∑
j∈N (i)

ωcωp(di − dj)2, (11)

where N (i) is the set of 4-connected neighbors of i. The
factors ωc and ωp are the weights of the bilateral filter, rep-
resenting color similarity and spatial distance in the image
coordinates, respectively. These are defined as ωc = exp

(
−‖Ii−Ij‖

2

σc
2

)
,

ωp = exp
(
−‖pi−pj‖

2

σp
2

)
,

(12)

where pi and pj are the image locations of pixels i and j,
and σc and σp adjust the sensitivity to color similarity and
spatial distance.

Regional smoothness term Er Recent segmentation-
based stereo approaches have demonstrated high accu-
racy in stereo matching. Our method incorporates a
segmentation-based soft constraint in a manner similar
to [26] by favoring disparity values within a segment to fit
closely to a 3D plane. We define the regional smoothness
term Er with respect to a local plane d = ax+ by+ c in the
disparity domain as

Er(D) =
∑
i∈I

(di − (aixi + biyi + ci))
2
, (13)



where {ai, bi, ci} are the 3D plane parameters fit to the dis-
parity values in the segment containing pixel i with image
location pi(xi, yi). For segmentation, we use mean-shift
color segmentation [8] with an appearance range resolution
of hc = 8.0, spatial resolution of hs = 3.0, and smallest
segment size of M = 500. The plane for a segment S is fit-
ted by weighted least squares using our confidence weight
ωi of Eq. (5):

{a, b, c} = argmin
a,b,c

∑
i∈S

ωi(d̂i − (axi + byi + c))2, (14)

where d̂ is the disparity estimate of pixel i.

4. Solution method
Our problem described in Sec. 3 is difficult to opti-

mize using a standard discrete optimization technique, such
as graph cuts or belief propagation, because our disparity
space is continuous, and more importantly because our left-
right consistency and ordering constraints would turn the
MRF into a higher-order model.

To efficiently solve this problem, we take an iterative op-
timization approach in the EM framework. Given a stereo
pair I , we estimate unknown disparities D with a confi-
dence map O (equal to 0 for unsure matchings, and 1 for
confident matchings) regarded as hidden data:

D∗ = argmax
D

logP (I,D)

= argmax
D

log
∑
O∈ψ

P (D,O, I), (15)

where ψ represents the solution space of the hidden data O.
The unknown parameters D are initialized by fast local

approaches, such as [21, 12]. We then iteratively perform
the expectation (in Sec. 4.1) and maximization (in Sec. 4.2)
steps to simultaneously estimate the disparity maps D of
both the left and right views.

4.1. Expectation step

In the expectation step, we assign a probability to each
pixel of being an outlier given the disparity estimates D(n)

at the n-th iteration. Unlike [26], which directly estimates
binary occlusion maps, we use the adaptive confidence
weight ωi in Sec. 3.1 to determine the confidence map prob-
abilities P (oi = {0, 1}|D(n)) of pixel i:{

P (oi = 0|D(n)) = 1− ω(n)
i ,

P (oi = 1|D(n)) = ω
(n)
i .

The confidence map probabilities inherit the properties of
our adaptive confidence weights, and have the effect of dis-
regarding matches that do not satisfy left-right disparity
consistency or disparity orderings.

4.2. Maximization step
In the maximization step, we maximize Eq. (15) with

respect to the parameter D given the observation I:

D(n+1) = argmax
D

∑
O∈ψ

P (O|D(n)) logP (O, I,D) (16)

= argmax
D

∑
O∈ψ

P (O|D(n)) log (P (O, I|D)P (D))

= argmin
D

∑
O∈ψ

P (O|D(n))(L(O, I|D) + L(D)),

where L is the negative log likelihood of P, i.e.,
L = − logP .

For unreliable matchings, we set L(O = 0, I|D) to 0 to
disregard their effects. Also, because L(D) is independent
of the hidden dataO, it can be moved out of the summation.
As a result, Eq. (16) can be rewritten as

D(n+1) = argmin
D

{
L(D) + P (O = 1|D(n))L(O, I|D)

}
.

(17)
Since L(D) represents prior knowledge about the disparity
map, we can relate the term with our smoothness term Es.
In addition, the second term P (O = 1|D(n))L(O, I|D) has
a correspondence with our data term Ed as it represents the
likelihood of photo-consistency given a disparity, weighted
by the confidence. From this, we can cast our stereo match-
ing problem of Eq. (1) into that of Eq. (17) with the follow-
ing relationships:{

L(D) = Es(D),
P (O = 1|D(n))L(O, I|D) = Ed(D).

Since the photo-consistency data term Ed defined
in Eq. (4) is highly non-convex and difficult to optimize, we
use the progressive convex hull filtering and parabola fitting
of [31] to approximate Ed at each maximization step:

Ed(i, di; I) ≈ a(n)i

(
di − d̂(n)i

)2
+ b

(n)
i

(
di − d̂(n)i

)
(18)

where a(n)i and b
(n)
i are the curvature and tangent of the

fitted parabola in [31], and d̂(n)i is the estimated disparity of
pixel i in D(n).

As a result, the sub-problem in the maximization step
becomes an over-constrained linear system: Ad

Ar
Al

[ DL

DR

]
=

 bd
br
bl

 . (19)

In the above, Ad, Ar are diagonal matrices correspond-
ing to Ed and Er with weights ωi and λsλr, respectively,
and Al is a symmetric matrix corresponding to El, where
Al(i, j) = λsωcωp as defined in Eq. (11). DL and DR

are the disparities for the left and right views. bd and br



are known values from Eq. (18) and Eq. (13) respectively,
and bl is a zero vector. When the number of pixels in an
image is n, we have DL, DR ∈ Rn, Ad, Ar ∈ R2n×2n,
Al ∈ R8n×2n, bd, br ∈ R2n, and bl ∈ R8n. We use the
sparse QR factorization [9] in SuiteSparse1 to solve the lin-
ear system.

5. Experiments
We evaluate our method using the Middlebury

dataset [1]. For our algorithm, the weighting factors
(λs, λr, α) in Eqs. (1, 10, 3) are fixed to (2.5, 0.04, 0.9),
and the truncation values (τc, τg) in Eq. (3) are fixed to
(7, 2) when the intensity range is [0, 255]. The sensi-
tivity parameters (σd, σc, σp) in Eqs. (6, 12) are set to
(0.4, 1.73, 1.22). We take the winner-takes-all result of the
local approach in [21] to initialize the disparity maps. Since
our method estimates continuous disparities, we evaluate
performance for 0.5-pixel accuracy.

Performance comparison on Middlebury dataset We
first compare our method to four related techniques that
explicitly label outliers, namely SymBP+occ [26], Outlier-
Conf [28], VarMOSH [4], and LLR [31], which is similar to
ours in its iterative optimization scheme. Figure 4 shows the
estimated disparity and error maps for non-occlusion (de-
noted as nonocc) regions. In the figure, the blue and or-
ange boxes highlight occlusion and texture-less regions, re-
spectively. Since our method estimates continuous dispar-
ities, it generally yields higher accuracy than the discrete
disparity methods SymBP+occ [26] and OutlierConf [28],
especially in large flat regions. Moreover, our use of adap-
tively updated outlier confidence leads to less error in occlu-
sion regions such as the blue box in Teddy. Our results in
texture-less regions tend to be better than that of [4], espe-
cially in the Tsukuba dataset, because of our consideration
of ordering constraints. Our results are closer in quality to
LLR [31], but our method can better recover from pixels
with poor initializations such as in the orange box of Teddy,
since ordering constraints help to detect such outliers.

Table 4 lists the rankings and percentages of inaccurately
estimated pixels for this comparison. Our method gener-
ally outperforms the other outlier handling methods and
demonstrates competitive accuracy to LLR with more than
10 times greater computational efficiency.

Adaptive confidence weight ω We examine the signif-
icance of our soft, adaptive confidence weight model by
comparing it to versions of our method that instead use a
uniform data weight and the fixed confidence weight de-
fined in [31]. Comparison results are shown in Figure 5.

1SuiteSparse: a Suite of Sparse matrix packages, at
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
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Figure 3. Percentage of erroneous pixels with different weighting
factors. Yellow bars: uniform data weight. Green bars: fixed con-
fidence weights. Orange bars: our adaptive confidence weights.

Nonocc err. Tsukuba Venus Teddy Cones
w/o LR 14.3 5.15 11.2 10.3

w/o ordering 10.6 3.53 13.7 7.92
Our method 7.09 1.85 9.88 6.55

Table 1. Numerical evaluation of left-right consistency and order-
ing constraints.

For the uniform data weight, we carefully tuned the param-
eter ωi in Eq. (2) and use this value for all the pixels. For the
fixed confidence weight, we set the value ωi for each pixel
according to the scheme in [31].

In Figure 5 (b) with the uniform data weight, occlusion
regions (blue and red) and repetitive texture regions (red and
green) are treated the same as other pixels, which results in
substantial errors. For the fixed confidence weight [31], the
repetitive region (green) is better handled, but the occlusion
region (red) still suffers from incorrect weight settings as
shown in Figure 5 (c). With our outlier confidence weight
(Figure 5 (d)), accurate disparities are obtained in both oc-
clusion and repetitive texture regions. Figure 3 shows the
percentage of pixels with incorrectly estimated disparity in
four different scenes.

Left-right consistency and ordering constraints Fig-
ure 6 shows the importance of incorporating both left-right
consistency constraints and ordering constraints in our soft,
adaptive confidence weight. Their effect is examined by re-
moving the left-right consistency constraint in Figure 6 (b)
and omitting the ordering constraint in Figure 6 (c). Re-
moving either of the two constraints increases the chance
that mismatches are not identified as outliers, as shown for
the repetitive texture in the red boxes. Likewise, it can also
lead to missed occlusions as illustrated in the blue boxes.
Application of both constraints together results in apprecia-
ble improvements, as shown in Figure 6 (d) and numerical
improvement in Tab. 1, since outliers have a much lower
likelihood of passing both constraints.



(a) Ground truth / (b) SymBP+occ [26] (c) OutlierConf [28] (d) VarMOSH [4] (e) LLR [31] (f) Our method
reference image

occlusion texture-less occlusion texture-less occlusion texture-less occlusion texture-less occlusion texture-less occlusion texture-less

Tsukuba nonocc err. 20.7% nonocc err. 24.7% nonocc err. 7.18% nonocc err. 7.55% nonocc err. 7.09%

occlusion texture-less occlusion texture-less occlusion texture-less occlusion texture-less occlusion texture-less occlusion texture-less

Teddy nonocc err. 15.7% nonocc err. 15.6% nonocc err. 12.9% nonocc err. 9.02% nonocc err. 9.88%
Figure 4. Comparisons of our method to SymBP+occ [26], OutlierConf [28], VarMOSH [4] and LLR [31] on the Tsukuba and Teddy
images. Our method shows higher accuracy in large flat regions, occlusion regions (blue boxes), and texture-less regions (orange boxes) in
comparison to the related methods. More results are available in the supplementary material.

Results on outdoor images Besides the Middlebury
dataset, outdoor images are also used to test our approach.
The three images shown in Figure 7(a) are selected from an
image sequence captured along a street and rectified wiht
a pre-process. The sky region is automatically segmented.
We use [12] to obtain an initialization. The resolution of
each image is 2200 × 1900, and it takes about 30 minutes
on our PC to process each image pair. Figure 7(c) shows
the reconstructed point cloud obtained by merging the three
results. The trees, streetlights and structure of the building

are nicely reconstructed by our method. From the use of
the proposed adaptive confidence weights, the boundaries
between the foregrounds and background are correctly de-
termined, and occlusion regions are also handled accurately.

Complexity and convergence analysis Our computation
is performed on an Intel Core i7 CPU with 4 cores and
8G RAM. In all of our experiments with the Middlebury
datasets, convergence of our iterative method is reached
within 10 iterations and a total of 1.5 minutes per 166K-



(a) Ground truth / reference image (b) Uniform data weight (c) Fixed confidence weight [31] (d) Adaptive confidence weight

Teddy nonocc err. 15.3% nonocc err. 13.9% nonocc err. 9.88%
Figure 5. Comparison of weighting strategies for the data term. (a) ground truth disparity map and a reference image. (b) disparity and
error map with a uniform data weight. (c) results with the fixed confidence weight of [31]. (d) results with our adaptive confidence weight
in Eq. (5).

(a) (b) (c)
Figure 7. Results on outdoor images. (a) Reference images. (b) Estimated disparity maps. The disparity range is mapped to wavelengths
of visible light (380nm to 710nm) for better visualization. (c) Reconstructed point cloud by merging the three results.

Resolution 166K 360K 1440K
Time per image pair (mins.) 1.5 3.5 14.5

Table 2. Computation time for different image resolutions with the
Middlebury datasets [22, 16].

pixel image pair. The processing times for other image res-
olutions are given in Table 2. We note that in this compu-
tation our method computes disparity for two views jointly,
rather than just one. The most time-consuming component
of our algorithm is the sparse linear solver, which can po-
tentially be accelerated by 5× via GPU2.

Our technique is relatively efficient compared to previ-
ous adaptive occlusion handling methods based on global
optimization, as shown in Table 3. With the image resolu-

2cuSPARSE:https://developer.nvidia.com/cuSPARSE.

Graph-cut BP [26, 28] LLR [31] PMF [18] Ours
O(M2L) O(NML) O(WNM) O(NM log(L)) O(NM)

Table 3. Time complexity comparisons.

tion denoted by M , the discrete disparity search range as
L, and the iteration number as N , the computational time
complexity of graph-cut optimization is O(M2L) [5] and
the computational time complexity of belief propagation is
O(NML) [10]. In practice, the computational complexity
of sparse QR factorization is linear on average to the num-
ber of nonzero entries of A in Eq. (19) [9]. While compu-
tational complexity is also dependent on matrix structure,
we note that the structure of A is relatively simple, as it
is built from three submatrices, two of which are diagonal,
with the other being symmetric with two entries per row



Algorithm Rank Tsukuba Venus Teddy Cones Avg.nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Our method 12 7.09 7.61 15.3 1.85 2.35 6.57 9.88 16.3 22.1 6.55 13.2 13.5 10.210 10 24 21 20 11 23 26 19 36 40 32

LLR [31] 19 7.55 8.63 14.1 6.25 7.13 13.0 9.02 15.8 20.8 6.46 13.0 13.0 11.218 22 14 70 79 77 19 25 15 33 36 26

VarMSOH [4] 27 7.18 8.56 20.1 1.46 2.12 7.87 12.9 19.4 27.5 6.22 12.6 15.8 11.816 21 87 17 18 21 67 68 71 29 31 56

SymBP+occ [26] 87 20.7 21.6 19.5 5.96 6.27 10.2 15.7 20.9 31.7 11.4 17.5 18.9 16.7114 114 79 58 55 32 97 87 110 103 101 92

OutlierConf [28] 104 24.7 25.0 17.4 8.01 8.27 13.7 15.6 20.5 28.7 10.9 17.3 17.4 17.3145 137 56 107 99 89 96 83 80 98 97 81
Table 4. Evaluation of our method on the Middlebury benchmark for 0.5-pixel accuracy. The table entries show the percentage of inaccu-
rately estimated pixels and the rank (blue) in the benchmark. The rightmost column lists the average percentage of incorrect pixels.

(a) Ground truth / (b) w/o LR (c) w/o ordering (d) Our method
ref. image

Venus
nonocc nonocc nonocc
err. 5.15% err. 3.53% err. 1.85%

Figure 6. Evaluation of left-right consistency and ordering con-
straints. (a) ground truth and reference image. (b) only order-
ing constraints. (c) only left-right consistency constraints. (d)
with both constraints. The left-right consistency and ordering con-
straints significantly improve the results in regions with occlusions
(blue box), without texture, and with repeated patterns (red box).

(see Eq. (19)). This linear relationship is also experimen-
tally reflected in the timings reported in Table 2. The time
complexity of our optimization, O(MN), where N is less
than 10, represents a significant speed-up over graph cut and
belief propagation. The complexity of LLR [31], which has
an optimization framework similar to ours, is a function of
the window sizeW (e.g., 5×5, or 7×7) for their smoothness
term. By contrast, the soft and adaptive confidence weights
of our method allow for a similar quality of results with
smoothness computed among only 4-connected neighbors,
which leads to a more than 10× speed up over LLR. Be-
sides the previous occlusion handling methods, our method
is also more efficient than approaches which are slightly
more accurate than ours. For example, PM-Huber [15] takes
2 mins with GPU acceleration, which is slower than our
CPU implementation. The time complexity of PMF [18] is
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Figure 8. Convergence analysis. (a) Average difference in dispar-
ity estimates between each iteration. (b) Average percentage of
error pixels.

O(NM log(L)) which will be inefficient when L is large.
Although our optimization framework does not guaran-

tee convergence, all image pairs converge within 10 itera-
tions as mentioned before, and we have not observed os-
cillatory behavior in our experiments. Figure 8 provides a
basic convergence analysis on the Middlebury datasets. We
plot the average difference in disparity estimates between
two consecutive iterations in Figure 8 (a), and the average
percentage of pixel errors3 in Figure 8 (b). The two curves
are both monotonically decreasing, which indicates conver-
gent behavior in practice.

6. Conclusion

In this paper, we presented a continuous stereo match-
ing algorithm with soft and adaptive handling of outliers.
For efficient accounting of left-right consistency and order-
ing constraints, we proposed continuous outlier confidence
weights that are iteratively updated as the matching results
are gradually refined. An empirical analysis of convergence
and complexity are presented, and our experiments support
the proposed approach in comparison to related methods.
Because of its combination of accuracy and speed, we be-
lieve that our method would be well-suited to applications
involving large-scale data, such as 3D reconstruction of ur-
ban scenes.

3Averaged over the Tsukuba, Venus, Teddy and Cones datasets.
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