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Abstract

We present a robust and accurate 3D registration method
for a dense sequence of depth images taken from unknown
viewpoints. Our method simultaneously estimates multiple
extrinsic parameters of the depth images to obtain a reg-
istered full 3D model of the scanned scene. By arranging
the depth measurements in a matrix form, we formulate the
problem as a simultaneous estimation of multiple extrinsics
and a low-rank matrix, which corresponds to the aligned
depth images as well as a sparse error matrix. Unlike previ-
ous approaches that use sequential or heuristic global reg-
istration approaches, our solution method uses an advanced
convex optimization technique for obtaining a robust solu-
tion via rank minimization. To achieve accurate computa-
tion, we develop a depth projection method that has mini-
mum sensitivity to sampling by reading projected depth val-
ues in the input depth images. We demonstrate the effective-
ness of the proposed method through extensive experiments
and compare it with previous standard techniques.

1. Introduction
Automatic 3D registration from a set of depth images has

a long history yet is still a challenging problem in computer
vision. Early approaches to 3D registration have been de-
veloped for range data that are acquired from sparse view-
points because the task of depth scanning has been expen-
sive. Recently, a significant effort has been made to de-
velop inexpensive consumer depth cameras that allow the
acquisition of depth images at a video rate, e.g., Microsoft
Kinect [1]. The video-rate depth cameras are becoming a
commodity tool for depth measurement with reasonable ac-
curacy. Such a depth camera brings a new problem setting
for 3D registration; registering a dense set of depth images
taken from continuously varying viewpoints. Since most
of the existing registration techniques are not designed for
dense sets of depth images, it is desirable to have a new
technique for robustly, efficiently, and simultaneously reg-
istering multiple depth images taken from dense viewpoints.

Figure 1: Illustration of the problem setting. A static scene
is densely observed from a continuously varying viewpoint.
From each viewpoint, a depth image is obtained. Our goal
is to simultaneously register the observed depth images.

A wide class of 3D registration techniques focus on pair-
wise registration due to the heavy computational complex-
ity of simultaneous registration, especially when the num-
ber of input depth images becomes large. With these tech-
niques, however, the error of the independent pair-wise reg-
istration accumulates, which leads to significant global mis-
alignment. Even though bundle adjustment or other heuris-
tic global methods have been used for refining the registra-
tion result, fewer studies have been done on simultaneously
registering multiple depth images.

In this work, we consider the situation depicted in Fig. 1.
A static scene is densely scanned from an unknown contin-
uous camera path, which gives a dense sequence of depth
images (e.g., a Kinect sensor recording VGA depth images
at 30 fps). The camera intrinsics are assumed to be known
and unchanged during the acquisition, while its extrinsics
are unknown. The objective is then to align all the input
depth images with each other simultaneously. Equivalently,
we search for all the camera extrinsics that best align all
depth images with a common cloud of points. The same
setting is presented in KinectFusion [13], where video-rate
3D modeling results are shown. While their work focuses
on efficient sequential registration for achieving real-time
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scanning, we are interested in robust, and accurate simulta-
neous registration that is designed as an offline process.

To achieve the goal of simultaneous registration of a
dense set of depth images, we develop a method based on a
rank minimization strategy. We cast the problem of align-
ing a set of overlapping depth images as a problem of re-
covering a low-rank component from a high dimensional
observation matrix. By stacking the depth images trans-
formed to our reference coordinates using the extrinsics as
a column vector in the high dimensional matrix, we for-
mulate the problem as a simultaneous estimation of all the
extrinsics and a low-rank matrix, which corresponds to the
aligned depth images, as well as a sparse error matrix. The
approach is motivated by previous work of Peng et al. [19],
called RASL, which performs robust 2D image alignment
from multiple images.

Estimating all the extrinsics that relate all depth images
together cannot be simply achieved by applying RASL in a
straightforward manner. Two major difficulties arise when
simultaneously registering multiple depth images. Firstly,
in contrast to 2D image alignment, we search for 2D to 3D
transformations that align all depth images to a global point
cloud. Accordingly, we have to formulate the relationship
between the observation matrix we use and the 3D trans-
formations that we want to estimate. Secondly, when reg-
istering depth images, a depth value itself changes with the
camera pose while the 2D image case preserves the pixel in-
tensity values. In other words, when the same scene point is
observed, the depth value is dependent on the camera pose,
while the intensity is not if a Lambertian scene is assumed.
In this work, we explicitly formulate the problem of simul-
taneously registering multiple depth images and propose a
solution method for it.

2. Related work
While successful attempts to simultaneously register

multiple 2D images have been made, a large amount of 3D
registration methods focus on pair-wise alignment. In gen-
eral, pair-wise registration methods can be divided into two
categories: (1) ones that use a sparse set of point correspon-
dences, which we call sparse feature-based methods, and (2)
ones that use a dense set of point correspondences, which
we call dense correspondence methods.

Sparse feature-based methods, like SIFT [16] and its
variants [4, 6, 25], are known to be fast and efficient, but
with limited accuracy. In these techniques, sets of key-
points are first detected, and a discriminative descriptor
is attached to each key-point. Then, the detected key-
points are matched across the range images to estimate
the best transformation using various approaches, such as
RANSAC [8], entropy maximization [15], or expectation
maximization [12].

The Iterative Closest Point (ICP) method [5] is a con-

ventional method that uses a dense set of point correspon-
dences, where each point in one scan is matched with its
closest point in the other scan to obtain dense correspon-
dences. Various extensions have been developed [13, 24,
28, 30, 31] for improving the computational cost and accu-
racy. Different metrics such as point-to-point [5], or point-
to-plane metrics [22] can be used to select the closest points,
and various outlier rejection strategies, such as reciprocity
or rigidity, are used to improve registration results. While
the ICP-based methods are in general accurate, they also
present some limitations. One of the major problems is that
point matches are computed independently. As a result, the
obtained cost function includes an accumulation of local er-
rors, which often makes the function trapped into a local
minima when the scene presents multiple symmetries.

For registering multiple depth images, there are pair-
wise and simultaneous approaches. In general, pair-wise
registration of multiple depth scans can be further divided
into two categories: (1) methods that use a frame-to-frame
approach [9, 28]; (2) methods that use a frame-to-global-
model approach [13, 17, 27]. In the first category, Weise et
al. [28] combine geometric and texture registration meth-
ods to align pairs of successive frames. Cui et al. [9]
propose to combine registration and super-resolution meth-
ods. From an initial estimate of the alignment obtained
using SLAM [10], super-resolution depth images are ob-
tained [20, 21], which are then aligned using a non-rigid
registration method with a mixture of Gaussians [14]. The
final position of each camera can then be obtained by com-
bining multiple pair-wise transformations. In the latter cat-
egory, Izadi et al. [13] use a framework where live depth
scans are registered to a global model of the 3D scene.

After aligning all input depth scans, various heuristic ap-
proaches are used to correct propagated errors. For exam-
ple, Torsello et al. [26] develop an algorithm that uses pro-
jection of pair-wise alignments onto a reference frame and
diffusion along a graph of adjacent nodes. Sharp et al. [23]
propose to distribute the accumulated errors using an op-
timization strategy over the graph of neighboring views.
When a loop in the input depth scans sequence is avail-
able, additional loop closure adjustment methods [29, 13]
are used to correct the propagated errors, sometimes at the
cost of global deformations in the final 3D model.

Extensions of the ICP algorithm [11, 18] have been pro-
posed for simultaneous registration of multiple range im-
ages. However, handling multiple range images simulta-
neously dramatically increase the computational time. As
pointed out in [11] it takes O(nb2imN log(N)) operations
to find all point correspondences across nbim range images
with N points each. Such methods are thus unpractical
when aligning a dense sequence of range images.

Our method is motivated by recent advances in the ro-
bust principal component analysis (RPCA) [7]. Based on



RPCA, Peng et al. [19] proposed a method called RASL,
which performs robust simultaneous 2D alignment of mul-
tiple images. Motivated by these previous works, we de-
velop a robust simultaneous 3D alignment method that does
not require computing matches through all input images,
but takes advantage of advanced convex optimization tech-
niques. While the extension of the previous method to the
3D registration is not straightforward, we develop a solu-
tion method that effectively takes into account the 3D to 2D
projections and handles issues that arise in 3D registration.

3. Proposed method
Our method takes a dense sequence of depth images

recorded with unknown camera motion. We assume that
the depth images of our input share a common overlapping
region of the scene. We start with an initial guess of the
camera extrinsics, and all depth measurements are projected
to the reference camera coordinates. With this setting, our
method finds extrinsics that align depth images in a simul-
taneous manner using a rank minimization strategy.

3.1. Notation

We represent the 6-DOF camera extrinsics estimated for
the k-th depth image dk as a rigid transformation matrix:

Tk =

[
Rk tk
0> 1

]
∈ SE3

where the Euclidean group SE3 := {R, t|R ∈ SO3, t ∈
R3}. This maps the k-th local coordinates to the global co-
ordinates. We will also use a single constant camera intrin-
sic matrix K ∈ R3×3 that transforms points on the sensor
plane to image pixels.

Let us denote by ρ a function that performs projection
onto the sensor plane of w = (x, y, z)> ∈ R3 to obtain its
projection on the image plane wp = (u, v, 1)> ∈ R3 by
wp = ρ(w). The function ρ−1 performs the inverse projec-
tion: w = ρ−1(wp, z). We will also use the function H to
denote a homogeneous operatorH(u) := (u>|1)>, and the
reverse dehomogenization operator H−1((u>|1)>) := u.
By a little bit of notation abuse, we will denote the z-
component of a vector w as z(w).

3.2. Problem formulation

Let us consider n depth images that have a common
overlapping region in the scene. We are interested in find-
ing camera extrinsics that correspond to the depth measure-
ments. A pixel q = (u, v)> has its corresponding 3D points
Pk(u, v) = ρ−1(K−1H(q), dk(u, v)) (k = 1, . . . , n) in
the local coordinates, where dk denotes the k-th depth im-
age. Each point Pk(u, v) is related to the corresponding
visible scene point Xk(u, v) ∈ R3 in the global coordinate
system, by

Pk(u, v) = H−1(T−1k H(Xk(u, v))).

The depth images {dk}k∈[1:n] and the intrinsics matrix K
are given as input. We aim at estimating the extrinsics ma-
trices Tk, or equivalently, estimating the aligned points Xk.

For a reference viewpoint1 ref with the extrinsics ma-
trix Tref = I , we can compute re-projected depth images
d(ref,k) by projecting scene points Xk that are visible from
the k-th view to the reference coordinates by

d(ref,k)(H
−1(Kρ(P(ref,k)(u, v)))>) = z(P(ref,k)(u, v)),

where

P(ref,k)(u, v) = H−1(T−1
refH(Xk(u, v))) = Xk(u, v).

When all points of Xk are well estimated, all the depth im-
ages d(ref,k) become well aligned up to occlusions, miss-
ing data, and data noise. By substituting Xk(u, v) with
H−1(TkH(Pk(u, v))) we can then write:

d(ref,k)(H
−1(Kρ(P(ref,k)(u, v)))>) =

z(H−1(TkH(Pk(u, v)))).
(1)

Therefore, d(ref,k) becomes a function of Tk. Now
we use a compact representation τk for denoting the
six extrinsic parameters of Tk, which are {Rx, Ry, Rz,
Tx, Ty, Tz}. We denote τ = τ1, . . . , τn, and vec the
vectorizing operator that only serializes pixels of the re-
projected depth image that have a valid depth measure-
ment in all the re-projected depth images. To compute
this, we use a binary mask, which is computed as an in-
tersection of valid entries of all the re-projected depth im-
ages. Therefore, the vectorizing operator depends on the
current estimates of the extrinsics. We then denote D(τ) =
[vec(d(ref,1), τ), . . . , vec(d(ref,n), τ)] the matrix of all re-
projected depth images in the vectorized form. Deriving
a closed-form expression of the operator vec is difficult;
therefore, we use a procedural approach to compute this.
As done in [19], the problem that we want to solve can then
be re-written, with a trade-off parameter α, as

min
A,E,τ

(rank(A) + α‖E‖0) s.t. A+ E = D(τ),

where matrix A represents the aligned depth images and
matrix E represents sparse errors or occlusions.

Since both rank minimization and `0-norm minimization
are NP-hard, in practice, we use2 ‖ · ‖∗ instead of rank(·),
and ‖·‖1 for ‖·‖0 as done by the Principle Component Pur-
suit method [7] because of the non-convexity of the origi-
nal problem. In addition, to deal with the non-linearity of
the constraint A + E = D(τ), we use a local linearization
D(τ + ∆τ) = D(τ) + J∆τ with the Jacobian matrix J of
D w.r.t. the transformations τ , as done in [19]. This leads to

1The choice of the reference viewpoint is arbitrary. In our case, we
choose the middle one ref = n

2
.

2‖A‖∗ =
∑n−1
i=0 σi(A), where σi(A) is the ith singular value of A.



the following convex optimization problem with unknowns
A, E, and τ :

min
A,E,∆τ

(
‖A‖∗ +

1√
m

‖E‖1

)
s.t. A+E = D(τ)+J∆τ, (2)

where the weight α is set to 1√
m

, andm is a number of lines
in D(τ).

As shown in [19], the relaxation we used is the most
appropriate, and the algorithm ensures convergence at a
non-empty solution with a reasonable initialization.To ef-
ficiently solve Eq. (2), we use the adapted Augmented La-
grange Multiplier (ALM), as recommended by [19].

The main difficulty in depth image alignment arises
when actually solving Eq. (2). Unlike the 2D image align-
ment case, the behavior of the functionD(τ) becomes com-
plex in 3D registration, and so is the problem of solving
Eq. (2). This is (i) because the projection operator exhib-
ited in Eq. (1) exists, (ii) because the depth of a point varies
depending on the transformation τ , and (iii) because the ad-
jacency relationship between pixels in a depth image varies
depending on the transformation τ , due to occlusions. As
a consequence, the Jacobian J cannot be computed analyt-
ically but needs to be obtained procedurally. Therefore, for
our problem, accurate and rapid computation of J becomes
fairly important. For this, we develop an efficient projec-
tion method to synthesize depth images from current esti-
mates of τ , which allows accurate and fast computation of
the Jacobian J using the finite difference method. We will
describe this in the next section.

3.3. Projection of Depth Images

We develop an efficient projection method that has min-
imal sensitivity to the surface sampling. Our method takes
depth images and extrinsics matrices as input and performs
projection to a virtual camera image plane with respect to
the reference depth image dref . The key idea is to compute
depth values of pixels in the virtual camera image plane by
interpolating depth values in the input depth images.

Let us assume a virtual camera cam. First, we generate
the cloud of points Pref from the reference depth image
dref using the intrinsics K. Pref is then projected onto the
virtual camera image plane to obtain the depth image dcamref
(dcamref (H−1(Kcamρ(H−1(T−1camTrefH(Pref (u, v))))) =

z(H−1(T−1camTrefH(Pref (u, v))))). The cloud of points
Pcamref is generated from dcamref using the intrinsics of cam.

For each depth image dk, the projected image dcam(ref,k)

is computed as follows. For each pixel (u, v)> of dcamref
that has a valid depth, the pixel location (u′, v′) of the
point Pcamref (u, v) for the depth image dk is computed using
the intrinsics and current extrinsics K and Tk ((u′, v′) =
H−1(Kρ(H−1(T−1k TcamH(Pcamref (u, v)))))>). The cor-
responding depth dk(u′, v′) is estimated using bi-linear
interpolation of the depth values in dk. We finally

compute the corresponding 3D point coordinates p′ =
H−1(TkH(ρ−1(H−1(K−1(u′, v′, 1)>), dk(u′, v′)))) and
transform it back to the local 3D coordinate system of cam
p = H−1(T−1camH(p′)) to obtain the depth of dcam(ref,k) for
the pixel (u, v)> (dcam(ref,k)(u, v) = z(p)). The overall pro-
cedure is illustrated in Fig. 2. Note that if a pixel (u, v)> of
dcamref does not have a valid depth, then the pixel (u, v)> of
dcam(ref,k) does not have a valid depth neither.

We use varying poses of virtual cameras for registering a
set of depth images to avoid local minima that produce in-
coherent alignments in different viewpoints3. Typically, the
virtual cameras are positioned at the front, left, and right of
the reference camera. Note that the virtual camera’s field
of view needs to contain an overlapping area with all input
depth images. The registration is then performed by itera-
tively aligning the depth images with respect to these virtual
cameras.

The main advantage of computing the re-projected depth
images in this way is that the accuracy of the projection
is not limited by the sampling resolution of the depth im-
ages. On the other hand, one drawback of this approach is
that points in the reference image that are not visible from
other views will have wrong depth values after the projec-
tion. Nevertheless, this side effect is collectively handled by
the error term E in Eq. (2).

4. Experiments
To demonstrate the effectiveness of our proposed

method, we evaluate our algorithm using both synthetic and
real data. For comparison, we implemented the frame-to-
global-model framework as proposed in [13]. For the ex-
trinsics estimation step, we chose to use the GICP method
as proposed in [22] in place of the linearized GICP as pro-
posed in [13], because the GICP method is more accurate
than its linearized version. We also compared our method
with GICP used in the frame-to-frame framework, as pro-
posed in [28]. We note that we used the GICP implementa-
tion provided by [2].

When the camera is taking drastically different positions
during the scanning procedure, we use a sliding window
with a fixed size through the input sequence of depth im-
ages. Namely, we define4 Nw as the size of the window (i.e.
the maximum number of images that we register at once si-
multaneously) and initialize the process by simultaneously
registering the first Nw depth images. Then, the sequence
is processed as follows: for each incoming depth image, the
window is moved by one frame (namely, for the ith frame
the window is composed of {dk}k∈[i−Nw+1,i]) and the cur-
rent block of images are simultaneously registered. Finally,

3Such incoherences may be for example small shifts in the z direction,
which may be local minima when seen from the front, but clearly mis-
aligned when seen from the left, or right side.

4We chose Nw = 20 in the experiments.
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Figure 2: Illustration of our depth image projection operator.

for each input depth image, its final estimated extrinsic pa-
rameters are output as our result. Note that when a loop ex-
ists, standard refinement methods take several passes of the
loop. In our method, such refinement is naturally performed
on-the-fly by sliding the window, even when no loop exists.

The initial extrinsics were chosen as the identity matrix
for the first window, and then we used previous estimates
as the incoming frame’s extrinsics. This initialization is
reasonable as the viewpoint difference between successive
frames is small when a video-rate camera is used.

In order to speed up the process, we created a pyramid
of down-sampled images for each frame and applied our
method with images from the highest tier. In the case where
the registration fails because there are not enough points in
the down sampled images, we used images from the next
level of the pyramid. As expected, a gain in speed comes
with loss in accuracy. Fig. 4 (a) shows the relationship be-
tween accuracy and time computation for different levels of
the pyramid. We can also see that our method was stable
when we used a pyramid of level 2 (i.e. 1

4 times initial reso-
lution). Depth image resolution became problematic when
it reached 1

16 times the input resolution. In this experiment,
we used the synthetic data AL shown in Fig. 3, which is
composed of 360 depth images. Note that we implemented
our method on a 3.47 GHz PCU with 96.0 GB memory, in
MATLAB and without any parallel computations.

4.1. Synthetic data

We used three synthetic data, AL, DRAGON, and TABLE,
and created depth images by rendering from surrounding
viewpoints. In all these experiments, we know the ground
truth camera parameters. We added various levels of noise
to the depth images to produce the final input. We first ex-
plain the evaluation metrics and then discuss the result.

Registration error metric We evaluate the registration
error using the distance between the estimated position of
points and the ground truth in the 3D world coordinates.
The mean absolute error MAE(dk) for the depth image dk
is defined as

MAE(dk) =
1

Q

Q∑
q=1

(
‖T̂kPk(q)− T ∗kPk(q)‖2

)
,

where T̂k is the estimated extrinsics5, T ∗k is the ground truth
extrinsics, Pk is the cloud of points generated from the
depth image dk and Q is the number of points in Pk.

We use two error measures using MAE(dk). One is the
max error em of MAE, and the other is the average ea of
MAE defined respectively as{

em = maxk (MAE(dk)) ,
ea = meank (MAE(dk)) .

Evaluation For each synthetic scene, we evaluate our
proposed method with uniform noise added in the depth im-
ages. Each depth image is perturbed with random noise in
the interval [−α, α], where α ranges between 0.0 and 10.0
[mm] with 1.0 [mm] interval. The typical noise level in
the depth images acquired using a Kinect camera is about
3.0 [mm]. The depth images are generated from the point
clouds. With depth images of VGA resolution, the resolu-
tion of the range images (i.e. the average distance between
two neighboring points) was about 10.0 [mm]. For each
data, we rendered 360 depth images as input. Namely, we
rotated the camera around the object by 1.0 degree interval
from 0 to 360 degrees. For AL and DRAGON we ran-
domly perturbed the camera path to simulate a hand-held
camera capturing.

Figure 3 shows qualitative registration results using the
three synthetic scenes with our method (without using a
pyramid), with GICP in the frame-to-global-model frame-
work (called FuGICP) and with the frame-to-frame GICP
(called GICP) in the case of α = 0.0. These are all rendered
as point clouds. Table 1 summarizes the quantitative re-
sults. While GICP in the frame-to-frame framework failed
without accurate initialization, our method always obtained

5Note that all extrinsics are transformed so that the extrinsics corre-
sponding to the first depth image become the identity matrix.
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Figure 3: Registration results obtained with the three synthetic data, with zoom around the estimated position of the last
camera. For data AL and DRAGON, the blue vertical line passing through the green circle is a marker for better visualization
of the error. For the data TABLE, the marker is the first camera position.

the most accurate registration results, even when compared
with FuGICP. In particular, Table 1 shows that the regis-
tration error obtained with our method is always below 10.0
[mm]. This means that the maximum deviation for all points
in all depth images compared to their ground truth positions
is below the resolution of the range data. The quantitative
results thus validate the accuracy of our proposed registra-
tion method. From Table 1, we can also see that the maxi-
mum errors em are close to the mean errors en. This means
that there are no huge errors throughout the sequences of
depth images, and thus the accuracy of our method is less
affected by changes in viewpoint.

Note that our method is less affected to changes in shape
of the object compared with FuGICP. This is because we
use a global evaluation metric accounting for multiple depth
images in contrast to the pair-wise local evaluation metric
used in GICP.

Figure 4 shows the results obtained with our method and

FuGICP for the three synthetic scenes and for various noise
levels added to the depth values. For time reasons, we chose
to apply our method with a pyramid of level 2 (which ex-
plains why the errors for α = 0 are slightly degraded com-
pared with Table 1). For each noise level, all methods were
run 10 times under the same conditions except for the noise
distributions, whose registration errors em and ea are shown
in the plots. From Figure 4, we can see that our method
achieves robustness against data noise while FuGICP is de-
graded as noise increases. In particular, adding noise in the
data TABLE had dramatic effects for FuGICP.

4.2. Real data

We also perform experiments using real data recorded by
Microsoft Kinect. This sensor can record 30 depth images
per second with a resolution up to 640 × 480. We used
the RGBDemo software [3] to capture the depth and color
images. Because we had to save the live data, the frame



Table 1: Registration errors em, ea, and ed for three synthetic scenes [mm] in the case of σ2 = 0.

AL DRAGON TABLE
Ours FuGICP GICP Ours FuGICP GICP Ours FuGICP GICP

Max error em 7.1 9.0 39.4 3.7 7.1 14.4 6.9 19.8 97.4
Average error ea 4.0 5.1 19.6 2.5 4.4 9.9 4.4 8.2 49.9
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Figure 4: Plots of average registration errors. Max error em, average error ea w.r.t. different noise levels using our method
and FuGICP are plotted.

rate dropped down to 10 images per second with some lags
in the sequence. For comparison, we used FuGICP, which
obtained better results than GICP with the synthetic data.

Figure 5 shows the results using two different real scenes
with our method and FuGICP. The first scene consists of
300 images and the second scene consists of 200 images.
While the FuGICP method breaks down in the first and sec-
ond examples, our method can accurately register the depth
images. The main reason for this is that even though GICP
uses dense point correspondences between pairs of depth
data, each correspondence is obtained independently. As a
consequence, parts of the scene that are weakly supported
by the global structure of the scene (feature-less parts, e.g.,
walls or tables) tend to affect the registration result. In con-
trast, our method uses a global measure to ascertain the ac-
curacy of the alignment (i.e., the rank of the stacked matrix).
Accordingly, local patches that lack discriminative geomet-
ric features have little impact on the registration result. In
addition, missing points are dealt with during the projection
process while occlusions and sparse depth measurement er-
rors are modeled in the optimization problem, which leads
to a robust registration method.

Note that in these experiments, the global camera motion
amplitude was small and that it was the most advantageous
situation for FuGICP. By doing so, the volumetric model

(a) Our method (b) FuGICP

(c) Our method (d) FuGICP

Figure 5: The results obtained with real data.

used in FuGICP could be restricted to a small part of the 3D
world, which allowed fine discretization of the 3D scene.
We chose the most challenging conditions to evaluate the
gain in accuracy of our method compared with FuGICP.



5. Conclusion
We introduced a robust simultaneous 3D registration

method for dense sets of depth images, based on a rank min-
imization strategy. By arranging the depth measurements in
a matrix form, we formulated the problem as a simultane-
ous estimation of all the extrinsics and a low-rank matrix,
which corresponds to the aligned depth images, as well as
a sparse error matrix that models corruptions, such as oc-
clusions. To solve the matrix decomposition problem, we
used an advanced convex optimization technique that ro-
bustly finds a solution that is unaffected by sparse errors.
We developed an efficient projection method that has min-
imal sensitivity to the surface sampling to achieve efficient
optimization. Our extensive experiments using synthetic
and real data demonstrated the robustness and accuracy of
our proposed method for simultaneous registration of mul-
tiple depth images.

Since the rank of all aligned depth images is 1 in the-
ory, enforcing this condition and minimizing the L1 norm
of the residuals may also be effective. Investigation in this
direction is left for future work.
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