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Abstract. In low-light conditions, it is known that Poisson noise and
quantization noise become dominant sources of noise. While intensity dif-
ference is usually measured by Euclidean distance, it often breaks down
due to an unnegligible amount of uncertainty in observations caused by
noise. In this paper, we develop a new noise model based upon Poisson
noise and quantization noise. We then propose a new intensity similarity
function built upon the proposed noise model. The similarity measure
is derived by maximum likelihood estimation based on the nature of
Poisson noise and quantization process in digital imaging systems, and
it deals with the uncertainty embedded in observations. The proposed
intensity similarity measure is useful in many computer vision applica-
tions which involve intensity differencing, e.g., block matching, optical
flow, and image alignment. We verified the correctness of the proposed
noise model by comparisons with real-world noise data and confirmed
superior robustness of the proposed similarity measure compared with
the standard Euclidean norm.

1 Introduction

Noise is inevitable in any imaging device. A digital imaging system consists of
an optical system followed by a photodetector and associated electrical filters.
The photodetector converts the incident optical intensity to a detector current,
or photons to electrons. During the process, the true signals are contaminated by
many different sources of noise. In fact, the true signal itself has fluctuations in
time due to the discrete nature of photons; the arrival of photons is not a steady
stream and obeys the Poisson law [1]. It implies that no matter how accurately
a computer vision experiment is performed, temporal fluctuation in intensity ex-
ists. The fluctuation becomes significant especially in low-light conditions where
the number of incoming photons is limited, i.e., photon-limited conditions. In
photon-limited conditions, quantization noise also becomes dominant due to the
lack of intensity resolution in the limited dynamic range. Besides these noise
sources, reset noise, dark current noise and read-out noise also become signifi-
cant, and it is known that they can also be approximated by the Poisson noise
model. Read-out noise is sometimes modelled by Gaussian noise; however, Gaus-
sian noise with variance σ2 and mean σ2 is nearly identical to Poisson noise with
� This work is done while the first author was visiting Microsoft Research Asia.
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Fig. 1. Sources of noise in imaging process in low-light conditions. In low-light condi-
tions, photon noise and quantization noise become dominant. In addition to them, there
exist reset noise, dark current noise and readout noise that also cannot be ignored. It
is known that they can be approximated by a Poisson distribution.

mean σ2 if σ is sufficiently large. Read-out noise satisfies this condition when
operating a camera at room temperature and with a high read-out frequency.

Important low-light vision applications include night vision, medical imag-
ing, underwater imaging, microscopic imaging and astronomical imaging. Even
in daily situations, Poisson noise often becomes significant in high-speed imag-
ing. In these situations, uncertainty in observations increases significantly due
to Poisson noise and quantization noise. Particular operations under these con-
ditions, such as template matching [8, 6, 12] and edge detection [5, 4, 2, 10], have
been widely studied for many applications in fields such as object recognition and
motion estimation. Image restoration is also one of the central problems since
photon-limited images are usually severely degraded. Statistical methods [15, 14,
11, 13, 7], such as maximum likelihood (ML) estimation, are found to be effective
since they can account for the special properties of the Poisson distribution. All
of these techniques are found useful in low-light conditions; however, one funda-
mental question still remains open; what is the similarity between two intensity
observations with uncertainty?

Intensity distance is often measured in many computer vision algorithms, and
it is usually computed by Euclidean distance. Let k, l be two intensity measure-
ments. The Euclidean distance dE(k, l) is given by d2

E(k, l) = (k−l)2. It is correct
for measuring the intensity distance between two signals when intensity noise
is negligible, or a non-biased distribution of noise is assumed. However, they do
not hold in photon-limited conditions where a significant amount of biased noise
is added to the signal. Therefore, it is important to establish a new intensity
similarity function which deals with the uncertainty embedded in observations.

In this paper, we describe a new noise model for low-light conditions and
propose a new intensity similarity measure based upon the noise model. This
paper has two primary contributions.

– Poisson-quantization noise model: A realistic noise model in low-light
conditions is derived. The new noise model is built upon two inevitable noise
sources: Poisson noise and quantization noise. We call the combined model of



these two noise sources the Poisson-quantization noise, or PQ-noise in short.
The proposed noise model is able to account for the uncertainty caused by
the nature of photon arrival and digitizing process. The correctness of the
proposed noise model is confirmed by experiments with real-world data.

– A new intensity similarity measure: A new intensity similarity measure
is proposed based on our noise model, which deals with the uncertainty
caused by PQ-noise. The proposed similarity measure is useful in many
computer vision applications which involve intensity differencing, e.g., block
matching, stereo, optical flow and image alignment. The key advantage of
the similarity function is that it can easily take place of existing intensity dis-
tance functions based on Euclidean distance. We compare the performance
of the new intensity similarity function with the Euclidean distance function
in order to verify the robustness of the proposed method against noise.

The outline of the paper is as follows: In Section 2, we briefly review the
Poisson noise model and quantization noise model, and derive the PQ-noise
model. Section 3 formalizes the intensity similarity function which measures
the likelihood of two observations. The correctness and effectiveness of the PQ-
noise model and the intensity similarity measure are verified with experiments
described in Section 4.

2 Poisson-quantization noise model

In this section, we first briefly review Poisson noise and quantization noise in
Sections 2.1 and 2.2. We then formalize the Poisson-quantization noise model in
Section 2.3.

2.1 Poisson noise model

Poisson noise is modelled by a Poisson distribution defined as follows.
Definition 2.1: A Poisson distribution [9] with parameter λ is defined for all
k ∈ IN by the probability

p(k, λ) =
λk

k!
e−λ, (1)

with the mean E and variance V defined as follows.

E(λ) =
∞∑

k=0

kp(k, λ) = λ, V (λ) =
∞∑

k=0

k2p(k, λ)− E2 = λ. (2)

2.2 Quantization noise model

Quantization noise is the uncertainty caused by rounding observation amplitudes
to discrete levels which occurs due to the finite amplitude resolution of any digital



system. In analog-to-digital conversion, the signal is assumed to lie within a
predefined range. Suppose the minimum number of electrons which is necessary
to raise one level of observed intensity is q, and eq is the quantization noise. The
count of electrons is proportional to the number of photons by the factor of the
photon-electron conversion efficiency (the quantum efficiency of the sensor). A
simple model of quantization noise can be described as

eq =
N

q
−
⌊N

q

⌋
, (3)

where N is the number of electrons which are generated by the measurement.
For a more detailed quantization error analysis in computer vision, readers are
referred to [3].

2.3 Poisson-quantization noise model

Now we formalize the PQ-noise model, which is the combination of Poisson noise
and quantization noise.
Definition 2.2: A Poisson distribution with parameter λ and quantization
Q = {q0 = 0, . . . , qk, . . . , qn+1 = ∞} is defined for all k ∈ {0, . . . , n} by the
probability p(k, λ, Q) as

p(k, λ, Q) =
qk+1−1∑

i=qk

λi

i!
e−λ. (4)

The quantization parameter qk represents the minimum number of electrons
which produces intensity level k.

Suppose the simple case where the quantization interval is constant, i.e.,
qk = kq, and the observations are far from saturation. The quantization interval
is defined as the range of input values assigned to the same output level. With
this simple model, we first observe the different behavior of PQ-noise from that of
the Poisson noise model. We later relax the assumption to fit to a more realistic
model. In this condition, the mean E(λ, q) and variance V (λ, q) of the PQ-noise
model are given by3:

E(λ, q) =
λ

q
− 1

2
+

1
2q

+
1
q

q−1∑
k=1

eλ(e
2πik

q −1)

1− e−
2πik

q

, (5)

V (λ, q) =
λ

q
+

1
12
− 1

12q2
− 2λ

q2

q−1∑
k=1

e
2πik

q eλ(e
2πik

q −1)

1− e−
2πik

q

+
2
q2

q−1∑
k=1

e−
2πik

q eλ(e
2πik

q −1)

(1− e−
2πik

q )2

+
1
q

q−1∑
k=1

eλ(e
2πik

q −1)

1− e−
2πik

q

− 1
q2


q−1∑

k=1

eλ(e
2πik

q −1)

1− e−
2πik

q




2

. (6)

3 The derivation of the mean and variance is detailed in Appendix A.
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Fig. 2. The mean and variance properties of PQ-noise. Due to quantization noise,
strong oscillations are observed. Left: Evolution of the mean with respect to λ with
q = 100. Right: Evolution of the variance with respect to the mean with q = 100.

As seen in the above equations and in Fig. 2, oscillation with an exponen-
tial decay e−λ(1−cos( 2π

q )) is observed in both mean and variance. The minimum
intensity level of the linear range corresponds to λ ∝ 1

1−cos( 2π
q )
≈ q2

2π2 .

Fig. 2 illustrates the difference between the ordinary Poisson noise model and
the PQ-noise model. As shown in the figures, PQ-noise has oscillations due to
the quantization noise component.

In practice, q1 does not equal to q due to the shift of the function caused
by the offset voltage. Here we consider the more realistic model of the PQ-noise
model with the following conditions: q0 = 0 and qk = q1 +(k− 1)q. It is possible
to derive E(λ, q) and V (λ, q) for this condition by the same derivation used
for Eqs. (5) and (6). When E(λ, q) is reasonably high, i.e., E(λ, q) � q

2π2 , the
following relationship4 between E(λ, q) and V (λ, q) holds in the linear range.

V (E, q, q1) =
E

q
+

q2 + 12q1 − 6q − 7
12q2

. (7)

This model has two unknown parameters q and q1. These unknown parameters
can be calibrated by fitting the observed noise data to Eq. (7).

3 Derivation of Intensity Similarity Measure

Given two intensity observations k and l, what can we tell about the similarity
between them? Usually, the similarity is measured by Euclidean distance with
an assumption that k and l are true signals, or the noise model is non-biased.
However, they do not hold in low-light conditions. We develop a new intensity
similarity measure which is based upon the probability that two intensity ob-
servations come from the same source intensity. In this section, we first derive
the intensity similarity measure for the Poisson noise case in order to make the
derivation clear. We then develop the intensity similarity measure for the PQ-
noise model. In fact, the Poisson noise model can be considered as the special
case of the general PQ-model with the quantization parameter q = q1 = 1.
4 The derivation of Eq. (7) is detailed in Appendix B.



3.1 Poisson noise case

In the Poisson noise model, the case where two observed intensities arise from
the same intensity distribution is equivalent to their sharing the same parameter
λ. If we assume that two intensity observations have the same parameter λ, the
probability of obtaining two observations k and l is

P (k, l, λ) = p(k, λ)p(l, λ) =
λk+l

k!l!
e−2λ. (8)

This is obviously not sufficient to produce the actual probability because of the
unknown parameter λ. However, the best case where λ maximizes the probability
gives the measure which maximizes the similarity between k and l. Indeed, this
approach corresponds to the ML estimation of the observation of the pair (k, l).
Therefore, the optimal λ̂ can be obtained by putting the first derivative ∂P

∂λ = 0,
and we obtain

λ̂ =
k + l

2
, (9)

which maximizes the probability defined in Eq. (8). In this way, the intensity
similarity function can be defined as

d(k, l) = − ln
(
P (k, l, λ̂)

)
= (k + l)

(
1− ln

(k + l

2
))

+ ln(k!) + ln(l!). (10)

Note that this similarity measure does not agree with the exact definition of
distance because d(k, k) > 0 if k > 0, but it produces the similarity between two
observations.

Fig. 3 shows the intensity similarity function defined in Eq. (10). The func-
tion has a similarity to the l2 norm when two observed intensity levels are
high. In fact, when k and l are sufficiently big, d(k, l) has a connection to the
squared l2 norm. This can be shown by rewriting Eq. (10) with the approxima-
tion ln(k!) ≈ k ln(k)− k:

d(k, l) ≈ k ln(k) + l ln(l)− (k + l) ln
(

k + l

2

)
(11)

= f(k) + f(l)− 2f

(
k + l

2

)
≈ f ′′(k+l

2

)
(k − l)2

4
≈ (k − l)2

2(k + l)
.

3.2 Poisson-quantization noise case

Using the derivation in the previous section, we formalize the intensity similarity
function for the PQ-noise model. We first define the joint probability P ; the
probability of observing k and l having parameters λk and λl respectively with
the quantization Q by

P (k, l, λk, λl, Q) = p(k, λk, Q)p(l, λl, Q). (12)
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Fig. 3. The intensity similarity function defined in Eq. (10).

We are seeking λ̂ (= λk = λl) which maximizes the probability P . This is
equivalent to maximizing the probability that two intensity observations share
the same intensity source λ̂. We denote P (k, l, λ, Q) = P (k, l, λk, λl, Q) when
λk = λl. The optimal λ̂ always exists since the logged probability − ln P is
convex.5

1. If k = l, the maximum of P (k, k, λ, Q) is given by6

λ̂ = (qk...(qk+1 − 1))
1

qk+1−qk−1 . (13)

2. If k �= l, we can obtain the optimal λ̂ by minimizing the convex function
− ln(P ). Here we describe a simple algorithm for finding the optimal λ̂ with
a dichotomic search over the first derivative of P .

Algorithm for finding the optimal λ̂
Input are k, l, qk, qk+1, ql, ql+1 and niter .
Set λmin = 0 and λmax sufficiently big, and n = 0,
While n < niter and P ′ �= 0
do

Set λ← λmin+λmax

2 and n← n + 1.
Compute P ′ = −∂ ln(P (k,l,λ,Q))

∂λ
If P ′ < 0 set λmin ← λ.
If P ′ > 0 set λmax ← λ.

done
Set λ̂← λ.

5 The convexity is proved in Appendix C.
6 It can be derived from the first derivation of the function described in Appendix C.



The sign of P ′ can be determined by computing the sign of(
λqk+1−1

(qk+1 − 1)!
− λqk−1

(qk − 1)!

) ql+1−1∑
i=ql

λi

i!
+
(

λql+1−1

(ql+1 − 1)!
− λql−1

(ql − 1)!

) qk+1−1∑
i=qk

λi

i!
.

To find the optimal λ̂, other descent methods such as gradient descent,
Newton-Raphson, etc. can also be used alternatively.

In the above way, the optimal λ̂ is determined. The intensity similarity func-
tion is finally determined by plugging in the optimal λ̂ into the following function
using Eqs. (4) and (12):

d(k, l, Q) = min
λ
{− ln(P (k, l, λ, Q))} = − ln(P (k, l, λ̂, Q)) (14)

= − ln

{
e−2λ̂

(qk+1−1∑
i=qk

λ̂i

i!

)(ql+1−1∑
j=ql

λ̂j

j!

)}
.

4 Experiments

In order to confirm our theoretical results, we performed experiments with real-
world noise datasets. Our interests are 1) verifying the correctness of the pro-
posed PQ-noise model and 2) confirming the superiority of the proposed intensity
similarity measure over the standard l2 norm.

In order to obtain datasets, we mounted a video camera at a fixed position
and captured an image sequence of a static scene in a low-light condition. There-
fore, the only fluctuation in an image sequence is caused by noise. The images
captured under the severe low-light conditions are almost totally black to hu-
man eyes, but they still contain intensity information. Fig. 4 shows one of such
scenes used for the experiment. We captured raw image sequences by a Point
Grey DragonflyTM camera, and the intensities observed in the green channel are
used for the entire experiment. For the illumination source, a DC light source is
used to avoid intensity oscillations. We also used a small aperture and a short
shutter speed to produce a low-light environment.
PQ-noise model To verify the correctness of the PQ-noise model, we com-
pared the mean-variance distribution of the real-world data with our analytic
model described in Sec. 3.2. For the experiment, we have captured 1000 im-
ages of a static scene in a low-light condition. The unknowns q and q1 are both
estimated by least squares fitting to the linear range of the PQ-noise model de-
scribed in Eq. (7). Fig. 5 shows the plot of observations and the analytic model
with estimated q and q1. As shown in the figure, our analytic model well fits the
actual observations, especially in the low intensity levels where the oscillation is
observed clearly. The root mean-square error of observations from the theoretic
curve is 0.0090 in Fig. 5.
Intensity similarity measure To evaluate the robustness of the proposed
similarity measure against noise, block matching is applied to the image se-
quences; if the block stays at the original position, the measure is not affected



Fig. 4. One of the scenes used for the experiment. Left: The original input image in a
low-light condition. Right: The left image is linearly scaled by 60.
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Fig. 5. Evolution of the variance with the mean. The dotted line is the theoretical
result with the calibrated parameters, q = 67 and q1 = 168. The dots are the measured
noise which is obtained from 1000 images of a static scene under a low-light condition.

by noise. The same test is performed using the l1 and l2 norms over the same
datasets, and we compared the outcomes of these norms with that of the pro-
posed intensity similarity measure. We denote the l1 and l2 norm measure and
our intensity similarity measure described in Eq. (14) as dl1 , dl2 and dPQ re-
spectively. The parameters for dPQ, i.e., q and q1, are calibrated beforehand by
curve fitting as done in the previous experiment. The parameters q and q1 are
estimated as q = 67 and q1 = 168 in our experiment.

In the left image of Fig. 6, the performance growth obtained by our similarity
measure in comparison with the l1 and l2 norm is shown. Our major interest
is the comparison with the l2 norm; however, a comparison with the l1 norm is
also given since the l1 norm is often used in practice because of its simplicity. In
the left graph, 0% indicates the same performance as the l1 or l2 norm. The per-
formance growth from the l2 norm, for example, is computed by Nc(dPQ)−Nc(dl2)

Nc(dl2)

where Nc(dPQ) and Nc(dl2) are the number of correct matches with dPQ and dl2

respectively. The same computation is applied for the l1 norm case to obtain the
performance improvement analysis as well. We can observe that our similarity
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Fig. 6. Performance evaluation the proposed intensity similarity measure. Left: Perfor-
mance growth of block matching using our intensity similarity measure in comparison
with the l1 and l2 norms. Right: Variation of the performance growth in compari-
son with l2 norm under different low-light conditions. The logarithm is taken for a
visualization purpose on the right graph.

measure significantly exceeds the l1 and l2 measures, especially when the block
size is small. In fact, when the number of pixels in a block is large, the averaging
of error reduces the biased property of the Poisson-quantization distribution.
Therefore, the l2 norm which is adapted to Gaussian noise becomes effective as
well.

In order to analyze the performance variation in different low-light conditions,
we performed the same experiment over image sequences with different exposure
settings. The dataset is obtained by capturing the same scene with changing
exposure time, i.e., t, 2t, 3t, 4t and 40t where t = 15ms. For these datasets, the
observed intensity values have a range of [0, 7], [0, 12], [0, 18], [0, 24] and [0, 235]
respectively. The last setting 40t is not considered a low-light condition, but we
tested with this setting as well in order to see the behavior of our similarity
measure in such a condition. The right graph of Fig. 6 shows the performance
growth in comparison with the l2 norm using the different exposure settings.
As shown in the graph, the proposed similarity measure is effective especially
in severe low-light conditions. It can be seen that it also works for the ordinary
condition (the 40t setting), although the performance improvement from the l2

norm is almost zero.

5 Conclusion

In this work, we have proposed a new intensity similarity measure which is
useful for low-light conditions where Poisson noise and quantization noise be-
come significant. The intensity similarity measure is derived from the Poisson-
quantization noise model which we develop as the combination of the Poisson
noise model and the quantization noise model.

The correctness of the proposed PQ-noise model is verified by comparison
with real-world noise data. The proposed intensity similarity measure is robust



against Poisson-quantization noise, and is therefore effective in low-light con-
ditions. The robustness is compared with the l2 norm using block matching,
and we confirmed that the proposed method largely exceeds the performance
of the l2 norm especially when the block size is small. Our intensity similarity
measure is capable of achieving more accurate matching, especially in situations
where large blocks cannot be used. The proposed noise model and intensity sim-
ilarity measure are useful for many computer vision applications which involve
intensity/image matching in photon-limited conditions.
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Appendix A

We derive the mean and variance for a PQ-distribution described in Eqs. (5)
and (6). We begin with the following theorem about quantization.



Theorem 1. Let X ∈ Z be a discrete random variable which has a characteristic
function φ(t) = E(eitX). Its quantized version Xq can be defined by Xq = �X

q 	.
The characteristic function φq of Xq is given by

φq(t) =
1− e−it

q

q−1∑
k=0

φ( t+2πk
q )

1− e−i t+2πk
q

.

Proof. Let pn be pn = P (X = n). The characteristic function φq of Xq is

φq(t) =
∞∑

n=−∞
pnei�n

q �t =
∞∑

n=−∞
pnei n

q tei(�n
q �t− n

q t).

The function f :

{
Z 
→ C

n → ei(�n
q �t−n

q t) is q-periodic, therefore it can be written

by a trigonometric polynomial
q−1∑
k=0

ake
2πikn

q . Using a discrete Fourier transfor-

mation, we obtain:

ak =
1
q

q−1∑
j=0

f(j)e−
2πijk

q =
1
q

q−1∑
j=0

e−i j
q te−

2πijk
q =

1
q

q−1∑
j=0

e−j i(t+2πk)
q

=
1− e−i(t+2πk)

q(1− e−i t+2πk
q )

=
1− e−it

q(1 − e−i t+2πk
q )

.

Therefore,

φq(t) =
∞∑

n=−∞
pnei n

q t
q−1∑
k=0

ake
2πikn

q =
q−1∑
k=0

∞∑
n=−∞

pnein t+2πk
q

1− e−it

q(1− e−i t+2πk
q )

=
q−1∑
k=0

φ

(
t + 2πk

q

)
1− e−it

q(1− e−i t+2πk
q )

.

QED

Corollary 1. The mean Eq of Xq and variance Vq of Xq can be written by the
mean E, the variance V , and the characteristic function φ of X:

Eq =
E

q
− 1

2
+

1
2q

+
1
q

q−1∑
k=1

φ(2πk
q )

1− e−
2πik

q

Vq =
V

q
+

1
12
− 1

12q2
− 2E

q2

q−1∑
k=1

e
2πik

q φ(2πk
q )

1− e−
2πik

q

+
2
q2

q−1∑
k=1

e−
2πik

q φ(2πk
q )

(1− e−
2πik

q )2

+
1
q

q−1∑
k=1

φ(2πk
q )

1− e−
2πik

q

− 1
q2

(
q−1∑
k=1

φ(2πk
q )

1− e−
2πik

q

)2

.



These formulas are given by the computation of the derivatives of φq, using the
fact that Eq = −iφ′

q(0) and Vq = −φ′′
q (0)− E2

q .

Eqs. (5) and (6) are the result of the previous formulas with a Poisson distribu-
tion which has the characteristic function φ(t) = eλ(eit−1).

Remark 1. We can extend the previous result to the continuous random variable
case. Let X be a random variable in R, and φX(t) its characteristic function.
Let �X	 be the quantized version of X . Using the Fourier series of the 1-periodic

function defined over R, i.e., f(x) = eit(�x�−x) =
∞∑

n=−∞
i
e−i(t+2πn) − 1

t + 2πn
e2πinx, we

can show that the characteristic function φ�X� of �X	 is

φ�X�(t) =
∞∑

n=−∞
i
e−i(t+2πn) − 1

t + 2πn
φX(t + 2πn),

where the summation has to be done by grouping terms of n and −n together
if it is not convergent. The mean E�X� can be simply derived by

E�X� = EX − 1
2

+
∑
n�=0

φX(2πn)
2πn

.

This applies to any kind of distribution, for example, the mean of a Gaussian
distribution can be derived as follows. Let X be a random variable following the
Gaussian law N (µ, σ2). The characteristic function becomes φX(t) = eiµt−σ2t2

2 .
Therefore,

E�X� = µ− 1
2

+
∑
n�=0

eiµ2πn−σ22π2n2

2πn
= µ− 1

2
+

∞∑
n=1

cos(2πnµ)e−σ22π2n2

πn

As the series on the right is decreasing exponentially with n, this gives a practical
way to compute E�X�.

Appendix B

We derive the PQ-noise model in the linear range described in Eq. (7). With
an assumption that observed intensities are far enough from saturation, the
approximation n = ∞ can be used. We use the previous theorem described in
Appendix A and divide the problem into two cases.

1. If q1 ≤ q, let X(λ) be a discrete random variable on the shifted Poisson
distribution defined by

∀k ≥ q1 − q, P (X(λ) = k) =
λk+q1−q

(k + q1 − q)!
e−λ.

In this case, �X(λ)
q 	 has the wanted PQ-distribution. It is straightforward to

see that EX(λ) = λ + q1 − q, and VX(λ) = λ.



2. If q1 > q, let X(λ) be a discrete random variable which satisfies
8>>><
>>>:

P (X(λ) = 0) =

q1−qX
j=0

λj

j!
e−λ,

P (X(λ) = k) =
λk+q1−q

(k + q1 − q)!
e−λ. ∀k ≥ 1

Then again, �X(λ)
q 	 has the wanted PQ-distribution. When λ is big, the

approximation P (X = 0) ≈ 0 holds. Therefore, EX(λ) ≈ λ + q1 − q, and
VX(λ) ≈ λ are deduced.

Using Corollary 1 and the remark, which shows lim
λ→∞

φX(λ)(2kπ) = lim
λ→∞

φ′
X(λ)(2kπ) =

0, we are able to deduce that E(λ, q, q1) = λ+q1
q − 1

2 + 1
2q and V (λ, q, q1) =

λ
q2 + 1

12 − 1
12q2 in the linear range. Therefore,

V (λ, q, q1) =
qE(λ, q, q1) − q1 + q

2
− 1

2

q2
+

1

12
− 1

12q2
=

E(λ, q, q1)

q
+

q2 + 12q1 − 6q − 7

12q2
.

Appendix C

We show that the probability function − ln P in Eq. (12) is convex.

Proposition: f : λ 
→ −ln

( n∑
i=m

λi

i!
e−λ

)
is convex.

Proof.

f ′(λ) =

−
n∑

i=m

(
λi−1

(i− 1)!
− λi

i!

)
e−λ

∑ λi

i! e−λ
=

λn

n!
− λm−1

(m− 1)!∑ λi

i!

f ′′(λ) =

n∑
i=m

(
λn−1

(n− 1)!
− λm−2

(m− 2)!

)
λi

i!
−
(

λn

n!
− λm−1

(m− 1)!

)
λi−1

(i− 1)!

(
∑

λi

i! )2

=

n∑
i=m

λn+i−1

n!i!
(n− i) +

λm+i−2

(m− 1)!i!
(i−m + 1)

(
∑

λi

i! )2
> 0.

Therefore f is convex.

QED


