
Interactive Shape from Shading∗

Gang Zeng Yasuyuki Matsushita† Long Quan Heung-Yeung Shum†

Hong Kong University of Science and Technology Microsoft Research Asia†

Clear Water Bay, Kowloon, Beijing Sigma Center, No.49, Zhichun Road,
Hong Kong, P. R. China Beijing, P. R. China

{zenggang,quan}@cs.ust.hk {yasumat,hshum}@microsoft.com

Abstract

Shape from shading (SfS) has always been difficult for
real applications due to its intrinsic ill-posedness. In this
paper, we propose an interactive SfS method which effi-
ciently uses human knowledge in order to resolve ambiguity.
We propose a global solution of continuous surfaces with a
few constraints of surface normals that are interactively im-
posed to regularize the problem. A surface is divided into
local patches, and each local solution is estimated with a
fast marching SfS. It is shown that the boundaries of local
solutions constitute a weighted Voronoi diagram, which al-
lows for the formation of a global solution from the local
ones. Finally, we optimize this global estimation by mini-
mizing an energy functional based on shading and smooth-
ness priors. Reconstruction results from both synthetic and
real images demonstrate the usability of the new approach
for various modeling applications.

Keywords: Interaction, Shape from Shading, Fast March-
ing, Shortest Path, Poisson Refinement.

1. Introduction

Shape-from-Shading (SfS) has long been a classic and
fundamental problem in computer vision. The problem is
essentially ill-posed even given the assumptions of Lamber-
tian reflection and a known directional light source. In order
to resolve ambiguities, various kinds of additional assump-
tions are used in the literature. Most of these assumptions
are not general, so it has been difficult to solve the problem
over various types of scenes.

In this paper, we propose an interactive approach to the
SfS problem which efficiently resolves its inherent ambigu-
ity using human knowledge.

∗This work was done while the first author was visiting Microsoft Re-
search Asia.

1.1. Prior Work
In the context of shape recovery from a single image,

there are two main streams of research in the literature; SfS
and interactive modeling.

SfS has long been studied as a central problem in com-
puter vision. Here we only review some of the work that
relate closely to our work. Readers are referred to recent
surveys [12, 19, 4]. Among various types of approaches,
Fast Marching SfS (FM-SfS) [10] is found to be compu-
tationally efficient as its complexity is O(N log N) where
N is the number of pixels. Aside from its numerical effi-
ciency, this method is known to give a viscosity solution to
an Eikonal equation. Recently, Tankus et al. [16] extended
this work to handle perspective lighting conditions. One
problem of FM-SfS is that it is limited to computing a sur-
face with only one maxima (or minima) point, hence it is a
local solution and has difficulties in constructing complex
surfaces. A method is proposed in [9] to automatically esti-
mate a global solution. However, this method is limited to
a regular surface; more precisely, a Morse surface [5] that
may not be found commonly in real scenes.

In interactive modeling, many different approaches have
been used to realize 2.5D modeling from a 2D input image,
e.g., methods which directly assign depth values to pixels in
an image [14, 8], a method which uses surface normals as
input [18] and sketch-based modeling [20, 6] which facili-
tates shape modeling using 2D strokes. While these meth-
ods are suitable in modeling simple shapes; however, they
are not effective to model complex surfaces because of the
amount of user interaction required.

1.2. Proposed Approach
The limitations of previous approaches have motivated

us to propose a new approach, an interactive SfS method,
for the purpose of practical shape modeling from a single
shading image. Our method uses human knowledge as the
prior to make the problem tractable. Given a small number
of surface normals, our method automatically determines

User Input Local patch generation Surface reconstruction

Interactive Shape from Shading Shape Refinement

Optimization

Figure 1. An overview of the interactive SfS and shape refinement. Interactive SfS receives user input (blue points in the left
figure), and automatically segments an image into a set of local patches. Local surfaces are then reconstructed individually while
maintaining the depth continuity among patches. Shape refinement is applied after interactive surface construction.

the peaks of the surface and localizes the problem by seg-
menting the input image into a set of local patches as illus-
trated in Fig. 1. SfS is then locally applied to reconstruct
each local surface patch, and the local solutions are then
combined to form a smooth global surface. This approach
is motivated by the fact that SfS works well for solving local
problems [10, 1, 3]. For satisfactory interaction speed, we
use FM-SfS [10] which is considered to be the fastest solver
for a local SfS problem. The limitations of FM-SfS are 1)
an accurate peak position is required, and 2) it only solves
local problems. In order to combine FM-SfS in our inter-
active method, we have developed algorithms which enable
peak detection, segmentation, and automatic merging of lo-
cal solutions. In this way, we derive a global solution over
piecewise C1 continuous surfaces without using boundary
assumptions, which has been a difficulty in prior works.

The reason that we chose surface normals as the user in-
puts is that it is easier for a human to recognize a surface
orientation over its depth [11]. This fact is also used in [18]
for interactive modeling. The problem of peak detection is
formulated as the shortest path problem on a network of a
2D image grid in Sec. 2. This formulation also allows us
to use the solutions of classic graph theory such as mini-
mum spanning tree and Voronoi diagram, to determine the
boundaries of local patches. The details of peak detection,
segmentation and surface reconstruction are found in Sec. 3.

The shape estimated with interactive SfS is visually plau-
sible with the help of user interaction; however, it still has
small discontinuities in surface normal, especially around
the boundaries of the local patches. For shape refinement,
we minimize an energy functional which is defined by a few
assumptions based on smoothness and shading priors. This
optimization is applied only once after interactive SfS as
illustrated in Fig. 1. The details are found in Sec. 4.

In Sec. 5, results from both synthetic and real images are
shown to demonstrate the usability and accuracy. Finally,
we conclude the paper with future work in Sec. 6.

2. Formulation

Given an input shading image I(x, y) and a set of user-
defined surface normals N = {ni} at positions P = {pi},
the goal is to reconstruct a surface z(x, y) of the scene using
its shading image based on the following assumptions.
Assumptions: Throughout this paper, we assume that the
shading image is photographed orthographically, and the
scene is composed of Lambertian surfaces which exhibit
single-bounce reflections and are illuminated from a known
direction by a point light source at infinity. The surface is
assumed to be piecewise C1 continuous, and cast shadows
will not be considered.

2.1. Shading image formation model
Let us first review the shading image formation model

for a 3D Lambertian object. Let the light source direc-
tion be given by (l,−1), l ∈ R

2 and the surface normal
by (∇z(x, y),−1), where ∇ = (∂

∂x , ∂
∂y) is the gradient op-

erator. The shading image is formed as their inner product:

I(x, y) =
l · ∇z(x, y) + 1√||l||2 + 1

√||∇z(x, y)||2 + 1
. (1)

For the simple vertical light source case whose direction is
the same as the viewing direction l = (0, 0), the shading
image is given by I(x, y) = 1√

||∇z(x,y)||2+1
. The prob-

lem becomes the reconstruction of z(x, y) from its gradient
magnitude that is given by following Eikonal equation,

||∇z(x, y)|| =
√

I−2(x, y) − 1. (2)

For the oblique light source case where the light source
direction is different from that of the viewer l =
(lx, ly), ||l|| �= 0, we transform the problem from the image
coordinate system (x, y, z) to the light source coordinate
(x̂, ŷ, ẑ). Thus, the problem becomes almost the same as
the vertical light source case, but different in that the right
hand side of Eq. (3) depends on the surface itself:

||∇ẑ(x̂, ŷ)|| =
√

Î−2(x̂, ŷ) − 1. (3)

This dependency can be written as

Î(x̂, ŷ) = I(lxx̂ − lyŷ + lxẑ, lyx̂ + lxŷ + lyẑ), (4)

where Î is a transformed shading image.

2.2. Fast Marching formulation
As described by Kimmel et al. [10], FM-SfS is able to

compute a consistent solution in O(N log N) time for both
the simple vertical light source and the oblique light source
cases where N is the total number of pixels (grid points).
Their algorithm actually performs a plane sweep along the
lighting direction (l,−1). At any time, this plane intersects
the surface of the scene ẑ(x̂, ŷ) with a 2D closed curve.
Seen from the shading image in the light source coordinates
Î(x̂, ŷ), the 2D projection of this curve moves as the plane
sweeps over the surface. Supposing the plane moves at a
constant speed, a moving speed |∇T (x̂, ŷ)| of the 2D curve
can be defined at each point by

|∇T (x̂, ŷ)| = |∇ẑ(x̂, ŷ)| =
√

Î−2(x̂, ŷ) − 1. (5)

In this way, the time when the 2D curve visits a pixel is
related to the depth value of this pixel, and the 3D sur-
face reconstruction problem can be converted into the 2D
curve propagation problem. Using Fast Marching Method
(FMM), this 2D curve propagation problem T (x̂, ŷ) is
solved efficiently, and as a result, the surface shape ẑ(x̂, ŷ)
is estimated. For the oblique light source case, the depen-
dency is overcome by adopting the smallest depth value
from all the neighbors of the updated point [10]. Based
on this method, in the following part of the paper, we use
the light source coordinate system and denote it by (x, y, z)
(in the previous section, it was (x̂, ŷ, ẑ)), and thus we have
l = (0, 0).

At its core, FMM is closely related to Dijkstra’s
method [2] which is a classic algorithm for computing the
shortest path on a network. At the same time, it relies on
a heap to find the smallest element of the expanding front,
and can be considered as a Huyghen’s principle algorithm
where the expanding wave is confined to the network paths.
For example, let us consider a particle that is always on the
expanding front. The trail of this particle is actually the
shortest path from its starting position to its current posi-
tion. In fact, the expanding front and the shortest path are

two different views of the same problem. Therefore, we use
FMM to solve the shortest path problem. Later we will see
that the shortest path allows us to back-track information,
thus helps us to determine the peaks and the boundaries of
local surface patches.

2.3. Shortest path formulation
Now we formalize the global SfS problem as a set of

the shortest path problems. Given the position of a peak o,
which has a surface normal toward the lighting direction, we
aim to find the distance Do(x, y) to other points (x, y) on
the network. The network here is considered as the 2D grid
on the image plane and is used to solve the 2D curve prop-
agation problem by computing the shortest path. A weight
value W (x, y) is defined on each vertex of the network as
follows.

W (x, y) ≡ |∇T (x, y)| = |∇z(x, y)| =
√

I−2(x, y) − 1. (6)

The distance Do(x, y) is related to the sum of the vertex
weight W , and therefore it equals to the relative depth value
of a point (x, y) on the local patch. Moreover, the local
tangent direction of the shortest path is the direction along
which the distance increases most significantly, and there-
fore this direction is considered as the 2D projection of the
surface normal.

In a general case, given a set of peaks O = {oj}, we
aim at finding a weighted distance D(x, y) from each point
(x, y) to its nearest reference point (peak), such that this
distance is equal to the depth z(x, y). In other words, we
have

z(x, y) = D(x, y) = min{Doj(x, y) + z(oj) : oj ∈ O}, (7)

where z(oj) is an additional shifting term of the peak oj .
Again, the local tangent line of the shortest path is the 2D
projection of the surface normal.

In this way, the global SfS problem is converted into
the weighted shortest path problem, which is related to a
weighted Voronoi diagram. Note that it cannot be solved
directly without knowing z(oj), which is actually the alti-
tude of the peak. The detection of z(oj) is converted into
the problem of finding the minimum spanning tree, and is
further discussed in Sec. 3.

3. Interactive SfS

In this section, we introduce interactive SfS. The idea
of our algorithm is locally computing surface patches
Doj(x, y) from each peak oj ∈ O and connecting them to-
gether to form a whole surface z(x, y). To distinguish peaks
from other singular points, a small number of surface nor-
mals are given in a shading image. This section describes
our method of detecting peaks using these surface normals

User InteractionUser Interaction Automatic processAutomatic process

Surface normal inputSurface normal inputSurface normal input

Peak DetectionPeak DetectionPeak Detection

Altitude ComputationAltitude ComputationAltitude Computation

Surface ReconstructionSurface ReconstructionSurface Reconstruction

Figure 2. A flow chart of the interactive SfS, which in-
cludes four parts: user input of surface normals, peak detec-
tion, altitude computation and surface reconstruction. The
whole process is repeated until a satisfactory result is found.

and combining local solutions to generate a global solution
with simultaneously determine the boundaries of local solu-
tions. The method is composed of the following four steps
as shown in Fig. 2.

In the first step, a user inputs a few surface normals
N = {ni} on points P = {pi}. The normal information
is then used to detect peaks O = {oj} that are consistent
with the given surface normals in the second step. In the
third step, relative altitudes of peaks z(O) = {z(oj)} are
estimated using saddle points which can be automatically
detected. This estimation relies on the geometric relation-
ship among the peaks in the network, and the problem is
solved using the minimum spanning tree algorithm. Finally,
in the fourth step, local surface patches Doj are computed
from each peak oj ∈ O. A global surface z(x, y) is then
estimated by connecting local patches Doj (x, y) at bound-
aries which are simultaneously detected using a weighted
Voronoi diagram. The above steps are repeated until the
user finishes interaction.

3.1. Peak Detection
We aim at detecting the peaks O that are consistent with

the given surface normals N at positions P . To achieve
this, we first compute the shortest paths from pi to the other
points. Among these paths, the correct path from pi to oi

is determined, since the 2D projection of ni is equivalent
to the local tangent direction of this path. Since the peak
is one type of singular point whose surface normal direc-
tion is the same as the lighting direction, it always has the
brightest intensity. We use this as an additional constraint
to determine the peak along the path. In practice, in order
to handle a reasonable degree of error on the input normal,
we search the paths within a small angle, and detect the

peak oi as the nearest brightest point from pi. Other sin-
gular points such as valleys and saddle points will never be
found in this way, not only because the algorithm always
back-tracks the shortest path toward the altitude-ascending
direction, but also because the user can always revise the
input based on the results.

In the more general cases where multiple normals are
given, it may happen that several normals share a common
peak (i.e., their shortest paths intersect at this peak point.)
Finally, we need to merge the detected peaks to have
a minimum set of O that are consistent with the input
normals N . This also indicates an efficient input scheme,
where the number of inputs |N | equals the number of
peaks |O| on the surface. In summary, the peak detection
proceeds as follows.�

�

�

�

For each ni ∈ N ,
1. Compute the shortest path from pi using ni, which

contains the peak oi.
2. Determine oi along this path by taking the nearest

brightest point.
Merge the peaks to obtain the minimum set of O.

3.2. Altitude Computation
Once peaks O are determined from the given normals

N , the algorithm steps forward to the altitude computation
phase. Peak altitudes are closely related to patch bound-
aries, which are essential for the global surface reconstruc-
tion. This section describes the relationship between peak
and patch boundary, and introduces the method to compute
them.
[Relationship between peak and patch boundary]
Let us first consider two adjacent peaks o1 and o2 as il-
lustrated in Fig. 3. We aim at spreading two local patches
Do1(x, y) and Do2(x, y) from these two peaks and then
combining them. The depth value of a point (x, y) is the
sum of two parts, the relative depth value of this point on
the patch and the altitude of this patch, or

z(x, y) = Doj(x, y) + z(oj). (8)

In general, given a continuous surface, points on the patch
boundary have the depth value

Do1(x, y) + z(o1) = Do2(x, y) + z(o2); (9a)
z(o1) − z(o2) = Do2(x, y) − Do1(x, y). (9b)

Thus, the patch boundary has a close relationship with peak
altitudes z(O). In fact, we can obtain a patch boundary
given peak altitudes, and vice versa. Our strategy is to first
find a point on the patch boundary in order to determine the
peak altitudes, and then use these peak altitudes to estimate
the whole patch boundary. For convenience, we call a set
of points on the patch boundary as “boundary points”.

PeakPeak

PeakPeak

SaddleSaddle

BoundaryBoundary

RidgeRidge

Figure 3. Illustration of peak, saddle, ridge and boundary.

[Altitude computation between two adjacent peaks]
In order to detect a boundary point, we first define the ridge
as the shortest path that links two peaks on the network
which is defined in Sec. 2.3, i.e., a set of points (x, y) which
minimize the sum of distances Do1(x, y) + Do2(x, y).
We also define a saddle point s as the intersection of the
ridge and the patch boundary as illustrated in Fig. 3. The
saddle point divides the ridge into two monotonic parts
since ∂s

∂r = 0, where r is the local direction along the ridge
on the saddle point s. Thus, this saddle point is a singular
point, which is the brightest point on the ridge that can be
easily detected.
[Altitude computation among multiple peaks]

We now extend the altitude computation to the case of
multiple peaks. n peaks produce Cn

2 = 1
2n(n−1) pairs of

peaks in a brute-force manner. However, since a ridge is
only meaningful for adjacent peaks, the computation can
be reduced to a subset of pairs. This motivates us to first
compute the minimum spanning tree, whose vertices are
the peaks, and edges are defined by the distances among
these peaks. In our method, the minimum spanning tree
is computed by Prim’s algorithm [15], and after that, the
number of pairs is reduced to O(n). The relative altitudes
of those pairs are computed by Eq. (9). Finally, since all
peaks are directly/indirectly connected to each other by the
tree, we can obtain the altitudes of all peaks. In summary,
the altitude computation is described as follows.�

�

�

�

1. Find the minimum spanning tree of the peaks.
2. For each branch (oj ,ok) of the tree,
a. Compute the ridge between them.
b. Search along the ridge to detect the saddle point s

as the brightest point.
c. Obtain the relative altitude z(oj) − z(ok) by

computing Dok
(s) − Doj(s).

3. Assign altitudes z(O) for all peaks based on the
relative altitudes.

3.3. Surface Reconstruction
This step derives local solutions {Doj(x, y)} using ob-

tained peaks O and their altitudes z(O), and combines them
together to obtain a global solution z(x, y).

According to Eq. (9), for a simple case that all peaks
have the same altitude, the patch areas constitute a Voronoi
diagram of the peaks. In general, if the peaks have differ-
ent altitudes, the patch areas become bigger or smaller and
constitutes a weighted Voronoi diagram.
[Weighted Voronoi diagram for boundary detection]
The patch area Dj of a peak oj is a set of points where the

sum of the distance from the point (x, y) to oj and the peak
altitude z(oj) is smaller than that of any other peaks:

Dj = {(x, y) : Doj (x, y) + z(oj) ≤ Dok
(x, y) + z(ok)

∀ok ∈ O, k �= j}. (10)

In our method, the patch boundary estimation and local
surface reconstruction are performed simultaneously. First,
the altitude of each peak z(oj) is used to determine which
level-set the peak oj belongs to. The peak is put into the
level-set to indicate the reference altitude of the local patch.
By running the FMM, the boundaries are detected, and lo-
cal surface patches are computed and merged into a whole
surface z(x, y) as

z(x, y) =
⋃
j

{Doj(x, y) + z(oj) : (x, y) ∈ Dj}

= min
j

{Doj(x, y) + z(oj) : oj ∈ O}. (11)

In summary, the surface reconstruction is described as fol-
lows.�

�

�

�

1. For each peak oj ∈ O,
a. Compute which level-set oj belongs to based on

its altitude z(oj).
b. Put the peak oj into this level-set.

2. Run the FMM to simultaneously detect the
boundaries, construct the local surface patches
and connect them into the whole surface z(x, y).

4. Shape Refinement

Our interactive SfS guarantees a continuous connection
of the local patches. However, surface normals are not en-
forced to be smooth at the patch boundaries, because the
computation is local and directional. In order to refine this
surface estimation to obtain an optimal surface Z(x, y), we
minimize an energy functional of the form:

Etotal = Edata + αEsmooth + βEprior, (12)

where the first term enforces the similarity between the ob-
served image and the synthesized view. The second term
imposes smoothness as

Esmooth =
∫∫

||∇Z(x, y)||2dxdy. (13)

We also add the third term to account for a user prior Eprior

using the initial surface estimate as

Eprior =
∫∫

(Z(x, y) − z(x, y))2dxdy. (14)

4.1. Soft Poisson process
Jin et al. [7] observed that a direct approach of solving

the data term is unstable due to the coupling between sur-
face appearance and its normal. In the presence of measure-
ment noise, the surface will bend and ripple to fit the data.
This behavior can be suppressed by increasing the factor of
the smoothness term, but this results in oversmoothed re-
constructions. To circumvent this instability, we use a re-
laxed cost functional as done in [7] in which the normal
is decoupled from the surface via an auxiliary vector field
v(x, y). Now the problem is minimizing this new energy
function jointly with respect to both Z(x, y) and v(x, y):

Edata =
∫∫

||∇Z(x, y) − v(x, y)||2dxdy, (15)

whose solution can be obtained by solving a Poisson equa-
tion, ∇2Z(x, y) = ∇ · v(x, y), where ∇2 = (∂2

∂x2 + ∂2

∂y2)
and ∇· are Laplacian and divergence operators respectively.

The overall cost functional is formed by a weighted sum
of the three costs:

Etotal =
∫∫

||∇Z(x, y) − v(x, y)||2 + α||∇Z(x, y)||2

+β(Z(x, y) − z(x, y))2dxdy. (16)

It can be shown that the gradient descent flow minimizing
the total energy is given by

Zt(x, y) = (∇2Z(x, y) −∇ · v(x, y)) + α∇2Z(x, y)
+β(z(x, y) − Z(x, y)). (17)

4.2. Updating the auxiliary field
The auxiliary field is updated by the cost functional

Ev =
∫∫ (

I(x, y) − l · v(x, y) + 1√||l||2 + 1
√||v(x, y)||2 + 1

)2

+γ||∇Z(x, y) − v(x, y)||2. (18)

To minimize this energy functional, we first find a robust
surface normal n(x, y), whose orientation is computed by

the Eigensystem of the neighborhood of Z(x, y). Its mag-
nitude can be computed from the shading constraint:

I(x, y) =
l · n(x, y) + 1√||l||2 + 1

√||n(x, y)||2 + 1
. (19)

With this robust normal, the negative energy gradient mini-
mizing the cost functional Eq. (18) is given by

vt(x, y) = n(x, y) − v(x, y) + γ{∇Z(x, y) − v(x, y)}. (20)

The numerical implementation is carried out by the steepest
descent method.

5. Results

The proposed method is tested on both synthetic and
real-world data. For the synthetic scenes, two typical head
examples are constructed with our method as shown in
Fig. 4 and Fig.5. In Fig. 4(a) and Fig. 5(a), using a set of
user input surface normals (blue points), peaks and saddle
points (red and green points respectively) are first detected.
The surface is then estimated as shown in Fig. 4(b)-(c) and
Fig. 5(b)-(e) in each top row. This has been achieved inter-
actively with user prior information about the objects, and
users can change their inputs until satisfactory results are
obtained. In practice, we also allow the user to directly re-
fine the peaks and saddles to handle the sharp boundary on
the lips. We can see particularly accurate recovery of details
where the surface geometry is complicated in Fig. 4(d)-(e)
and Fig. 5(f)-(h) in the top row. As mentioned, a small num-
ber of surface normals are needed (5 or 6 for these two ex-
amples). The surface estimation of the first step is done in
about 0.15∼0.20 sec with Pentium4 2.8 GHz CPU for the
image of Fig. 4 of 300×300 resolution. This high speed
enables a user to interactively provide the surface normals
while viewing the resulting surface.

The shape refinement stage optimizes the surface esti-
mation by a shading constraint and a smoothness prior. We
have simply set α=0.1, β=γ=0.5 in Eq. (16) for the experi-
ments. The results of refinement are shown in Fig. 4(b)-(c)
and Fig. 5(b)-(e) in the bottom row. Compared to the re-
sult of interactive SfS, the resulting optimal surface is more
smooth and natural as seen in close-up views (Fig. 4(d)-
(e), Fig. 5(f)-(h) below). The surface refinement is done in
about 20 sec for the image of Fig. 4.

Fig. 4(f) shows the error between the ground truth and
surface estimations in both steps. The error is scaled for
the visualization purpose. Please note that the biggest error
(at the brightest points) is roughly 50 units (the unit is set
to the same as the pixel size). As shown in the figure, the
error is quite small near peaks, while it slightly increases
as it goes away from the peaks. In this example, the large

(a) (b) (c) (d) (e) (f)
Figure 4. Head reconstruction from a synthetic image. The top row shows the results of the interactive SfS; the bottom row shows
the results with the refinement stage. (a) Input image with the input normal (blue points), peaks detected (red points) and saddle
points (green points); (b)-(c) Different views; (d)-(e) Close-up views; (f) Error between surface estimates and the ground truth.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 5. Head reconstruction from a synthetic image. The top row shows the estimations of the interactive SfS stage; the bottom
row shows the surfaces with the refinement stage. (a) Input image with the user input surface normal (blue points), peaks detected
(red points) and saddle points (green points); (b)-(e) Surface estimations from different views; (f)-(h) Close-up views.

Figure 6. Comparison using a real-world scene. The leftmost column shows the input image and a view of the reconstructed
shape. The other columns are the comparison among our method (2nd), Lee and Rosenfield [13] (3rd), and Tsai and Shah [17] (4th).

Figure 7. Result of a complex real-world scene. From
left to right, input image, two different views of the recon-
structed shape are shown.

error is caused by the depth discontinuity between the face
and neck (or ears).

We also show two real examples in Fig. 6 and Fig. 7.
A comparison is made with Tsai et al.’s method [17], and
Lee et al.’s method [13] in Fig. 6, which proves that our
method can generate a more reasonable result. In Fig. 7,
we show our results of a more complex shape, a pepper. It
is important to notice that the existing SfS methods fail to
get a reasonable shape. For their results, we refer the reader
to [19]. With the interactive SfS method, a quite accurate
shape is reconstructed.

6. Conclusions
In this paper, we have proposed an interactive SfS

method, which uses human knowledge as a prior in real-
time interactions. This approach makes the SfS problem
well-posed over the class of piecewise C1 continuous sur-
faces where no automatic method with realistic assumptions
exists. The interactive SfS consists of alternating steps of
user input and estimation of the surface. To achieve our
goal, we have developed an algorithm to determine peaks
from the given surface normals and to estimate the bound-
aries of local solutions. Our method first computes local
solutions from each peak, and merges them to form a global
solution while maintaining the depth continuity among the
individual segments. The problem is formalized by the
classic graph problems such as the shortest path, minimum
spanning tree and Voronoi diagram, and efficiently solved
using FMM. In the shape refinement stage, the surface esti-
mate is optimized by minimizing a regularized form of the
energy functional which is defined by a few prior assump-
tions based on shading and smoothness priors.

Finally, we show the results of surface reconstruction
from both synthetic and real images to demonstrate the ap-
plicability and accuracy of the approach. We believe that
SfS can be applied to a wide variety of real-world scenes by
adding a small amount of user interaction. In future work,
we intend to use the proposed approach to achieve practical
applications such as single view relighting.

Acknowledgements
This work is supported by the Hong Kong RGC grant

HKUST 6182/04E and 6188/02E.

References

[1] M. Bichsel and A. Pentland. A simple algorithm for shape
from shading. In Proc. of IEEE Computer Vision and Pattern
Recognition, pages 459–469, 1992.

[2] E. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematic, 1:269–271, 1959.

[3] P. Dupuis and J. Oliensis. Direct method for reconstructing
shape from shading. In Proc. of IEEE Computer Vision and
Pattern Recognition, pages 453–458, 1992.

[4] J. Durou, M. Falcone, and M. Sagona. A Survey of Numeri-
cal Methods for Shape from Shading . Rapport de recherche
2004-2-R, IRIT, janvier 2004.

[5] H. Griffiths. Surfaces. Cambridge University Press, 1981.
[6] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketch-

ing interface for 3d freeform design. In Proc. of ACM SIG-
GRAPH, pages 409–416, 1999.

[7] H. Jin, D. Cremers, A. Yezzi, and S. Soatto. Shedding light
on stereoscopic segmentation. In Proc. of IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’04), volume 1, pages 36–42, June 2004.

[8] S. Kang. Depth painting for image-based rendering appli-
cations. Technical report, Compaq Computer Corporation,
Cambridge Research Lab., December 1998.

[9] R. Kimmel and A. Bruckstein. Global shape from shad-
ing. Computer Vision and Image Understanding, 62:360–
369, 1995.

[10] R. Kimmel and J. Sethian. Optimal algorithm for shape from
shading and path planning. Journal of Mathematical Imag-
ing and Vision, 14(3):237–244, 2001.

[11] J. Koenderink. Pictorial relief. Phil. Trans. of the Roy. Soc.:
Math., Phys, and Engineering Sciences, 356(1740):1071–
1086, 1998.

[12] R. Kozera. An overview of the shape from shading problem.
Machine Graphics and Vision, 7(1):291–312, 1998.

[13] C.-H. Lee and A. Rosenfeld. Improved methods of esti-
mating shape from shading using the light source coordinate
system. Artificial Intelligence, 26(2):125–143, 1985.

[14] B. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based
modeling and photo editing. In ACM SIGGRAPH Proceed-
ings, pages 433–442, 2001.

[15] R. Prim. Shortest connection networks and some generaliza-
tions. Bell System Technical Journal, 36:1389–1401, 1957.

[16] A. Tankus, N. Sochen, and Y. Yeshurun. Perspective shape-
from-shading by fast marching. In Proc. of IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’04), volume 1, pages 43–49, Jun. 2004.

[17] P. Tsai and M. Shah. Shape from shading using linear ap-
proximation. Image and Vision Computing, 12(8):487–498,
1994.

[18] L. Zhang, G. Dugas-Phocion, J. Samson, and S. Seitz. Sin-
gle view modeling of free-form scenes. Journal of Visual-
ization and Computer Animation, 13(4):225–235, 2002.

[19] R. Zhang, P.-S. Tsai, J. Cryer, and M. Shah. Shape from
shading: A survey. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 21(8):690–706, August 1999.

[20] D. Zorin and A. Hertzmann. Illustrating smooth surfaces. In
Proc. of ACM SIGGRAPH, pages 517–526, 2000.

