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Densely-sampled image representations such as the light field or Lumigraph have been

effective in enabling photorealistic image synthesis. Unfortunately, lighting interpola-
tion with such representations has not been shown to be possible without the use of

accurate 3D geometry and surface reflectance properties. In this paper, we propose an
approach to image-based lighting interpolation that is based on estimates of geometry

and shading from relatively few images. We decompose light fields captured at different
lighting conditions into intrinsic images (reflectance and illumination images), and es-

timate view-dependent scene geometries using multi-view stereo. We call the resulting
representation an Intrinsic Lumigraph. In the same way that the Lumigraph uses ge-

ometry to permit more accurate view interpolation, the Intrinsic Lumigraph uses both
geometry and intrinsic images to allow high-quality interpolation at different views and

lighting conditions. The joint use of geometry and intrinsic images is effective in com-
puting shadow masks for shadow prediction at new lighting conditions. We illustrate our

approach with images of real scenes.

Keywords : Lumigraph; Shadow Warping; Multi-view Stereo; Intrinsic Images.

1. Introduction

In recent years, much progress has been made in image-based rendering. One class

of such methods relies on densely sampled images, such as the light field10 and the

Lumigraph6. Another class requires an accurate physically-based rendering algo-

rithm and sufficiently detailed geometric and material properties of the scene and
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light sources3,18,23. Others require all of the above information22.

Methods that rely on densely sampled images have the advantage that they do

not require accurate geometry, which in practice requires a high-quality and range

finder. However, this advantage is achieved at the expense of a large database. In

addition, it is not possible to relight the scene using these current image-based

representations, with the exception of Wong et al.21, who use dense sampling of

camera locations and illumination conditions (and hence may not be practical for

real scenes). Methods that permit scene relighting typically need a detailed and

accurate 3D geometric model in order to extract surface properties in the form of

a Bidirectional Reflectance Distribution Function (BRDF). Usually, such models

can only be acquired using expensive range finders, and even then, the shapes used

as examples tend to be simple. Nimeroff et al. proposed another approach14 which

uses steerable linear basis functions to accomplish re-rendering of a scene under a

directional illuminant at an arbitrary orientation. One drawback of the method is

that it requires a huge basis set to handle narrow illuminants.

We are motivated by the need for a more practical approach to interpolate light-

ing appearance of a scene that has sparsely sampled lighting conditions. Equiva-

lent results can be obtained using densely sampled lighting conditions with high

compression26,27, however, such methods rely on precise geometry, which is often

difficult to obtain from light fields.

Our proposed method requires only images (light fields) as input, and assume

that the camera positions associated with these images are known. The light fields

are captured under a relatively small set of different lighting conditions. From these

light fields, we can extract two separate datasets: view-dependent geometries using

stereo, and intrinsic images using the method proposed by Weiss20. These datasets

are used to predict shadow movement with changing light conditions.

2. Prior Work

Much of the work on realistic rendering relies on reflectance modeling and known

3D geometry. A representative approach in this area is presented by Sato et al.18,

which merges multiple range datasets to yield a single 3D model. This shape is

subsequently used for diffuse-specular separation and reflectance estimation. They

showed results for single objects with no shadows. Wood et al.22 also use color

images and laser range scans. Their range datasets are merged manually to pro-

duce a global 3D model. Subsequently, a function that associates a color to every

ray originating from a surface is constructed and compressed. Magda et al.24 de-

veloped a method to reconstruct the geometry of objects with arbitrary BRDFs

from a scene’s incident light field. Using this method, Koudelka et al.25 developed

an image-based rendering technique in which novel images of an object can be

synthesized under arbitrarily specified illumination conditions. The approach cor-

rectly handles self-shadowing and interreflections using the recovered geometry. In

contrast, our method does not require accurate scene geometry but uses rough
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geometry to compute shadow shapes under intermediate lighting conditions.

Yu et al.23 compute surface BRDFs based on Ward’s anisotropic BRDF model19

from multiple images and a 3D model. They assume that at least one specularity

is observed per surface. On the other hand, Boivin and Gagalowicz2 propose a

technique for recovery of a BRDF approximation from a single image based on

iterative analysis by synthesis (or inverse rendering13). The emittances of the light

sources are assumed known. This is an extension of Fournier et al.’s work4, which

assumes perfectly diffuse surfaces, and Loscos et al.11, who additionally considered

textured surfaces. Marschner and Greenberg13 directly estimate the BRDF model of

Lafortune et al.8 from an image and a surface model. Malzbender et al.12 proposed

a space and time efficient method for encoding an object’s diffuse lighting response

as the light position varies with respect to the surface, using a set of coefficients.

Debevec3 uses global illumination for augmented reality applications. He uses

local geometry and manually computes reflectance parameters, with which objects

can be inserted with realistic-looking interreflections. In a series of works geared for

augmented reality, Sato et al. estimate the illuminationdistribution from shadows17,

and subsequently from the brightness distributions in shadows16.

In our work, we rely on intrinsic images as a means for predicting shadows.

Intrinsic images are a mid-level description of scenes first proposed by Barrow

and Tenenbaum1. A given image of a scene can be decomposed into a reflectance

image and an illumination image. Various methods have been proposed to com-

pute this decomposition, with piecewise constant reflectances using the Retinex

algorithm9, with all-reflectance/all-illumination classification using wavelets5, and

with maximum-likelihood (ML) estimation assuming time-constant reflectance and

time-varying illumination20.

3. Overview

An overview of our system is illustrated in Figure 1. The inputs to our method

are a number of light fields, each captured under a different illumination condition.

Once the light fields are acquired, view-dependent depth maps are then computed

at the sampled camera positions using a multi-view stereo algorithm.

In addition, we decompose the light fields into intrinsic images in a manner

similar to Weiss’s method20 (which handles a single image stream). For each camera

and lighting position, the pair of intrinsic images consists of an illumination image

that exhibits shading and shadowing effects, and a reflectance image that displays

the unchanging reflectance property of the scene. The illumination images are used

to identify pixels that contain cast shadows or attached shadows, which result when

a surface area is occluded from the light source. These shadow masks are used in

conjunction with shadows predicted by the scene geometry to estimate shadow

appearance for novel lighting directions.

We call this new representation the Intrinsic Lumigraph, because it uses both

geometry and intrinsic images for view reconstruction. When interpolating lighting
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Fig. 1. System overview.

conditions of the scene, the diffuse reflection and shading can be well-approximated

by interpolation of illumination images; however, shadows generally do not appear

realistic when linearly combined. Our method for predicting shadow appearance

enables us to synthesize images with much more accurate lighting interpolation.

4. Constructing the Intrinsic Lumigraph

In this section, we detail the process of constructing the Intrinsic Lumigraph. We

first describe the capture of light fields under various illumination conditions, and

then outline our algorithm for multi-view geometry. We next present our method

for computing the intrinsic images, followed by the determination of shadow masks.

4.1. Capturing Light Fields under Different Lighting Conditions

We capture our light fields using the imaging setup shown in Figure 2. The cam-

era is digitally controlled to capture images at predefined positions on a 2D grid.

Each light field consists of an image sequence along a linear path that is captured

under a fixed illumination condition, where the light source used is approximately

a point light source. Since it is often the case that the camera’s optical axis is not

perpendicular to the camera plane, or the camera is not in the precise position,

we adopted the technique developed by Deng et al.28 to accomplish the positional

error correction and rectification of the light field.

4.2. Generating View-dependent Geometries

Using the captured light fields, we compute depth maps at each camera position

using a multi-view stereo algorithm. The stereo algorithm is based on the work of
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Fig. 2. Light field capture device.

Kang et al.7; it was chosen because it is very simple to implement and is very effec-

tive in handling occlusions. To improve the depth estimates, we linearly combine

depth estimates from separate light fields taken under different lighting conditions.

Depth estimates from areas that are more highly textured are favored.

From a sequence of N light fields, for each reference view we first obtain N esti-

mated depth maps D(n) and N confidence maps C(n) using the multi-view stereo

algorithm. The confidence map C(n) is computed using the local matching error

variance, which provides an indication of the reliability of the estimated depths. We

use these confidence maps to refine the depth values through weighted averaging,

i.e.,

D(x, y) =

∑N

n D(n, x, y) · C(n, x, y)
∑N

n C(n, x, y)
. (1)

An alternative method for refining the estimated depth values is to use the local

Hessian of the local brightness distribution. The eigenvalues of the local Hessian are

correlated with the degree of local texturedness; the higher the amount of texture,

the more reliable the depth estimates tend to be in general. To be conservative,

we use the minimum eigenvalues as a measure of depth reliability and as a means

for weighting the depth estimates. The Hessian is obtained from the differential

method of SSD(sum of squared differences):

E(u, v) = Σk,l

(

I1(x + u + k, y + v + l) − Io(x + k, y + l)
)2

. (2)

In Equation (2), k and l correspond to the width and height of the subimage window



July 23, 2003 10:45 WSPC/INSTRUCTION FILE il˙cr

6 Y. Matsushita, S. B. Kang, S. Lin, H-Y. Shum and X. Tong

Fig. 3. Illumination sampling (left) and comparison of mean depth errors (right). The nine blue

bars correspond to mean depth errors for each of the light fields, the green bar is the error when
the Hessian (5×5 window) is used, and the red bar is the error obtained when the matching error

variance (5 × 5 window) is used.

respectively, while u and v represent the movement of the window along x and y-

axis. The differential method uses a local Taylor series expansion of the intensity

function

E(u + ∆u, v + ∆v)

= Σk,l

(

I1(x + u + ∆u + k, y + v + ∆v + l) − I0(x + k, y + l)
)2

' Σk,l

(

I1(x + u + k, y + v + l) + ∇I1 · (∆u, ∆v)T − I0(x + k, y + l)
)2

= Σk,l

(

∇I1 · (∆u, ∆v)T
)2

+ Σk,l

(

∇I1 · (∆u, ∆v)T
)

ek,l + E(u, v) (3)

where ∇I1 = (Ix, Iy) = ∇I1(x +u + k, y+ v + l) is the intensity gradient and ek,l is

the term inside the brackets in Equation (2). Minimizing w.r.t. (∆u, ∆v), we obtain

a 2 × 2 system of equations
[

Σk,lI
2
x Σk,lIxIy

Σk,lIxIy Σk,lI
2
y

] [

∆u

∆v

]

=

[

Σk,lIxek,l

Σk,lIyek,l

]

(4)

The matrix on the left hand side is referred to as the Hessian of the system.

Both methods produce comparable results, which are significantly better than

the depth maps generated from any one light field alone. We tested this on a

synthetic light field with known 3D geometry, and compared our results that merge

the depth estimates from all the light fields to one that uses only a single light

field. The results can be seen in Figure 3. In this experiment, we used nine light
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fields of a synthetic scene under different illumination directions (left). Each light

field has 9 × 9 images, and only the central image (used as the reference) is shown

in Figure 3. In the rest of this work, the local matching error variance is used to

improve accuracy of the depth values. The advantage of employing stereo using the

Hessian images is that the process is done by only one execution of depth estimation,

while the method using the local matching error variance requires n executions of

depth estimation when n illumination conditions are obtained.

We chose to compute the local view-dependent geometries because the stereo

algorithm, while good, does not produce perfectly accurate geometry. In addition,

some degree of photometric variation along the image sequence usually exists, mak-

ing the direct production of a single accurate global 3D geometry from images very

difficult. The local geometries encode such photometric variation, since they are

highly locally photoconsistent. The stereo algorithm has the tendency to maximize

this behavior.

4.3. Extracting Intrinsic Images

We applied Weiss’s ML estimation method20 to derive intrinsic light fields. Given a

sequence of N light fields with varying illumination, it is decomposed into a single

reflectance light field and N illumination light fields. With images of u × v in size

from s× t view points under n different illumination conditions, we can denote this

decomposition as follows:

I(s, t, u, v, n) = R(s, t, u, v) · L(s, t, u, v, n) (5)

where I(s, t, u, v, n), R(s, t, u, v), and L(s, t, u, v, n) are an input light field sequence,

a reflectance light field, and an illumination light field sequence, respectively. In the

log domain, (5) is written as (6):

i(s, t, u, v, n) = r(s, t, u, v) + l(s, t, u, v, n) (6)

For each of M derivative filters {fm}, a filtered reflectance light field r̂m is estimated

by taking the median of filtered input light fields:

r̂m(s, t, u, v) = mediann{i(s, t, u, v, n) ? fm} (7)

Finally, R(s, t, u, v) is recovered by deconvolution of the estimated filtered re-

flectance light fields r̂m.

4.4. Estimating Shadow Masks

A major difficulty in lighting interpolation is the realistic generation of shadows.

To compute shadow masks for real scenes, our approach first infers shadow pixels

from the illumination intrinsic image. The intensities in an illumination intrinsic

image represent magnitudes of incident irradiance, so image areas with low val-

ues indicate shadowed regions. To determine a suitable threshold for distinguishing

shadowed from non-shadowed pixels, we adopt the clustering technique of Otsu15.
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(a) (b) (c)

Fig. 4. Example of an illumination image and its shadow mask counterpart. (a) Original image,

(b) Illumination image, (c) Shadow masks.

The threshold is computed from maximizing the between-class scatter by minimiz-

ing within-class variances. In our case, we classify pixels into two classes, shadowed

and lit, assuming shaded pixels can be categorized into either of them. We first

create an intensity histogram for each illumination image to obtain the probability

density function p(i) where i indicates an intensity value. Assuming that shadowed

pixels have relatively lower intensity than lit pixels, we define the cumulative prob-

ability functions P for shadowed (Ps) and lit (Pl) area using a threshold value

T .

Ps(T ) =

T
∑

i=imin

p(i), Pl(T ) =

imax
∑

i=T

p(i) (8)

In the same manner, we define the mean of the shadowed (µs) and lit (µl) area as

functions of the threshold T as

µs(T ) =

T
∑

i=imin

ip(i), µl(T ) =

imax
∑

i=T

ip(i). (9)

Finally, the optimum threshold value Topt is computed from the following equation.

Topt = arg max
T

{Ps(T ) · Pl(T ) · (µs(T ) − µl(T ))2} (10)

To estimate shadow masks, the optimum threshold value Topt is determined

for each illumination image. There thresholds are then used to extract the shadow

masks. Even though these shadow masks include both attached shadows and dimly

shaded pixels, the quality of shadow warping is not significantly affected for two rea-

sons. First, the shadow masks are later intersected with geometrically-derived shad-

ows. This operation removes most non-shadow pixels. Second, the shadow masks

are treated as alpha mattes that represent the degree of shadow darkness. As a

result, brighter pixels contribute less to the final rendered shadow. A shadow mask

computed in this manner is shown in Figure 4(c).
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AA i+1i

Illumination Sample i Illumination Sample i+1

Intermediate illumination image

Fig. 5. Illustration of subimage registration over the geometric-based shadow blobs. Changes of
intermediate shadows’ shape are represented by transformation matrices from neighboring bases,

i.e. the geometric-based shadows under sampled illumination conditions.

4.5. Shadow Warping

While the technique described in the previous section allows us to estimate shadow

regions for images at sampled illumination conditions, it cannot be applied to inter-

mediate lighting directions. This is because the associated images are not available.

Since we are not able to predict the shape of intermediate shadow masks from intrin-

sic images, we instead predict the general shadow distortion between the sampled

lighting conditions using the shadows cast from the view-dependent geometries.

Although these geometries are not highly accurate, their shadows can be computed

for arbitrary light directions, and the distortions in shadow shape as a light source

moves from one sampled position to another can nevertheless be helpful in morphing

the shadows computed from intrinsic images.

In this process, we first estimate light source type (point / directional) and light-

ing directions of captured images with some user interaction. By clicking on several

pairs of corresponding shadow and object points in an image, the light source po-

sition can be determined by least-squares triangulation. With the light position

and the estimated geometry, the resulting shadows can be computed. We can also

compute the geometric-based shadows for light positions between the sampled illu-

mination directions.

After computing the geometric-based shadows, the changes in the geometric-

based shadows are computed by the region-based transformation matrices. Assum-

ing each shadow blob to be a subimage region, we employed subimage registration
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Geometry-based Shadow Geometry-based Shadow
Intermediate

Register to

Compute A

Intrinsic Shadow

Intermediate
Intrinsic Shadow

Apply       toA

intrinsic shadow

Transfer the warping matrix A

Fig. 6. After computing transformation matrix A of the geometric-based shadow by subimage
registration, the transform A is then applied to the corresponding intrinsic shadow to generate

intermediate shadow.

to compute the region-based shadow transformation matrices. By computing those

matrices, the changes in geometric-based shadow shape from one sampled light po-

sition to another can be used to guide the transformations of shadows computed

from intrinsic images. In Figure 5, transformation matrix A
+j
i corresponds to warp-

ing of the shadow blob from base image i to intermediate image j. Since those

shadow blobs do not have texture in them, the nearest shadow blobs are assumed

to be the corresponding shadow blobs. We assumed that geometric distortion of

the geometric-based shadow blobs can be described by linear 2D geometric trans-

formations as long as they are densely computed. Thus, we model the transform as

2D affine and the transform A is described by a 3 × 3 matrix.

This is done by attaching the intrinsic image shadows to the geometric-based

shadows, and as the geometric shadows are morphed from one sampled lighting to

another, the intrinsic shadows are morphed correspondingly as shown in Figure 6.

Attachment is done by applying an AND operation on the corresponding shadow

regions. In this operation, correspondences between the intrinsic shadows and the

geometric-based shadows are estimated by checking overlapping regions between

them. Since the process is done in the image coordinate frame, finding overlapping

shadow regions can be accomplished by pixel-wise test. Figure 7 shows an example

of geometric-based shadow warping applied to intrinsic shadow masks. Once the

shadow masks are predicted at intermediate illumination conditions, the view can
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(a) (d)

(b) (e)

(c) (f)

Fig. 7. Illustration of applying the transformation of geometric shadows to intrinsic shadows. (a)

Geometric shadows at L1, (b) Geometric shadows between L1 and L2, (c) Geometric shadows at
L2, (d) Shadow masks at L1, (e) Shadow masks between L1 and L2 (after applying the geometric-

based warping), (f) Shadow masks at L2. L1 and L2 are sampled illumination conditions.

then be synthesized. This synthesis is computed by removing shadows in the sam-

pled images using their intrinsic images, linearly interpolating diffuse reflections,

then computing shadows from the intrinsic lumigraphs.

To validate our shadow warping technique, we prepared a simple CG scene



July 23, 2003 10:45 WSPC/INSTRUCTION FILE il˙cr

12 Y. Matsushita, S. B. Kang, S. Lin, H-Y. Shum and X. Tong

(a) (b)

Fig. 8. A CG scene. (a) Original scene, (b) illuminated scene with view-dependent geometry.

Geometrically-based shadows

Ground Truth of Intermediate Shadow Shapes

Computed Intermediate Shadow Shapes
Sampled Shadow #1 Sampled Shadow #2

Fig. 9. Intermediate shadow shapes. A grid is overlaid for better visualization.

shown in Figure 8(a).

Since the view-dependent geometries are essentially 2 1

2
representations, they are

not able to include occluded surfaces such as the back of the sphere. As a result,

their derived shadows may be incorrect, as evidenced in Figure 8(b). Despite this,

such shadows provide useful cues on general shadow distortions between sampled il-
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(a) (b) (c)

Fig. 10. Comparison between ground truth (a) and the computed intermediate shadow shape (b).

In the difference image (c), i.e. (a) - (b), white pixels indicate positive error while black pixels
show negative error. Gray pixels represent no error.

lumination conditions. The intermediate geometrically-based shadow shapes can be

computed at an arbitrary dense sampling rate, and each deformation is obtained by

subimage registration. Finally, those deformation matrices are attached to sampled

shadow shapes to obtain the intermediate shadow shapes. Figure 9 depicts the inter-

mediate geometrically-based shadows, ground truth of intermediate shadow shapes

that are not used for this computation, and computed intermediate shadow shapes.

These computed intermediate shadow shapes are reasonably correct as confirmed

in Figure 10.

5. Results

In this section, we show results of lighting interpolation for two real scenes. Both

scenes are captured under the roughly parameterized directional light sources. In

this experiment, we used 7 directional light sources covering a hemicircle surround-

ing the scene.

5.1. Toy Scene

Figures 11(a,b) show examples of interpolating the lighting condition of a toy

scene with our shadow warping technique and with direct linear interpolation, re-

spectively. For this scene, we captured seven light fields with different lighting con-

ditions, where each light field is composed by 17×17 images. We can clearly see the

difference between the results of our method and those of linear interpolation, espe-

cially on the cast shadow of the toy on the left. This is more evident by comparing

the leftmost two images in Figure 13. The direct linear interpolation resulted in sig-

nificantly softer shadows, which is less consistent with the original sampled images.

And furthermore, a comparison among the ground truth, the result of our method,

and that of linear interpolation is shown in Figure 14. As we can see, our method

produced a more realistic-looking shadow, compared to linear interpolation.
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(a) (b)

Fig. 11. (a) Lighting interpolation examples for the toy indoor scene. (b) Lighting interpolation

using direct interpolation for the toy indoor scene.
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To quantitatively compare the results of our method and simple interpolation

method, the difference between the results and the ground truth is computed pixel-

by-pixel. In Figure 14, (a) is the result of our method, (b) is the ground truth, and

(c) is the result of simple interpolation. The image difference between (a) and (b)

is shown in (d), and between (b) and (c) is shown in (e). The image differencing is

done by summing up the RGB components’ distance. As is shown in a colorbar in

the figure, larger differences are colored in red while smaller differences are colored

in blue. We can clearly see that a better result is obtained by our method.

5.2. Portrait Scene

Figures 12(a,b) show the results of lighting interpolation of a scene containing a

portrait. We captured ten light fields under different illumination conditions for

this scene. Each light field is composed by 16 × 16 images. While cast shadows in

Figure 12(b) are blurred and exhibit abrupt movements for linear interpolation, cast

shadows warped by our method look more natural in Figure 12(a), and they move

more smoothly. This is more evident by comparing the rightmost two images in

Figure 13. Again, the direct linear interpolation method resulted in softer shadows,

unlike those in the original input images.

6. Conclusions and Future Work

We have described an approach for lighting interpolation of a scene without the need

for accurate physically-based rendering or detailed 3D geometry. It uses only light

fields captured under different, sparsely sampled, illumination conditions. Our ap-

proach uses intrinsic images and local view-dependent depths computed from stereo

in order to predict shadows at intermediate illumination conditions, which add sig-

nificantly to the realism of the synthesized view. The limitation of the method is

that the method requires the scene to be largely diffuse, since the reflectance image

R(x, y) in Weiss’s framework of intrinsic images is assumed to be view-independent.

We are working to derive time-varying reflectance images R(x, y, t) and correspond-

ing illumination images L(x, y, t) to overcome its limitation.

In future work, we would like to perform object manipulation such as object in-

sertion and removal, all while enabling realistic scene lighting interpolation. More-

over, we would like to address the more difficult issue of lighting interpolation of

outdoor scenes. This has the added difficulty of not being able to capture light

fields with a set of consistent illumination conditions, because of the time elapsed

between successive camera snapshots during light field capture.
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