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Abstract. This paper exploits the monotonicity of general isotropic re-
flectances for estimating elevation angles of surface normal given the az-
imuth angles. With an assumption that the reflectance includes at least
one lobe that is a monotonic function of the angle between the surface
normal and half-vector (bisector of lighting and viewing directions), we
prove that elevation angles can be uniquely determined when the surface
is observed under varying directional lights densely and uniformly dis-
tributed over the hemisphere. We evaluate our method by experiments
using synthetic and real data to show its wide applicability, even when
the assumption does not strictly hold. By combining an existing method
for azimuth angle estimation, our method derives complete surface nor-
mal estimates for general isotropic reflectances.

1 Introduction

Photometric stereo estimates a pixel-wise surface normal direction from a set
of images taken under varying illumination and a fixed viewpoint [1]. However,
the estimation suffers from inaccuracy when the surface has non-Lambertian re-
flectances. Although more flexible parametric reflectance models (e.g ., the Ward
model [2]) can be integrated to describe the non-Lambertian phenomenon, there
exists a trade-off between the computational complexity and generality of the
materials that can be dealt with. In this paper, we exploit the reflectance mono-
tonicity for estimating elevation angles of surface normal given the azimuth
angles (e.g ., from the method in [3]) to fully determine the surface normal for a
broad class of reflectances.

As described by Chandraker and Ramamoorthi [4], an isotropic Bidirectional
Reflectance Distribution Function (BRDF) consists of a sum of lobes, and the
reflectance of each lobe monotonically decreases as the surface normal deviates
from the lobe’s projection direction, along which the reflectance function is ‘con-
centrated’. Following their work, we assume that a surface reflectance contains
a single dominant lobe projected on the half-vector (the bisector of lighting and
viewing direction). Under this assumption, we perform a pixel-wise 1-D search
for the elevation angle in the range [0, π/2], given an azimuth angle for each
pixel. We prove that the reflectance monotonicity is maintained only when the
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correct elevation angle is found, if the scene is observed under dense directional
lights uniformly distributed over the whole hemisphere.

Based on the evaluations using MERL BRDF database [5] and the conclusion
in [4], we show that many materials such as acrylic, phenolic, metallic-paint, and
some shiny plastics can be well approximated by the 1-lobe half-vector BRDF
model. While some other materials, such as fabric, require two or more lobes for
precise representation, in practice, our algorithm still shows robustness against
the deviations and performs accurate estimation when a dominant lobe projected
on half-vector exists. We assess the applicability of our method to 2-lobe BRDFs
as well and verify the effectiveness of the proposed method on various real data.

2 Related Works

Conventional photometric stereo algorithm [1] assumes Lambert’s reflectance
and can recover surface normal directions from as few as three images. With ad-
ditional images, non-Lambertian phenomenon such as shadow can be handled [6].
With more images, various robust techniques can be applied to statistically han-
dle non-Lambertian outliers. There are approaches based on RANSAC [7], medi-
an filtering [8] and rank minimization [9]. Spatial information has also been used
for robustly solving the problem by using expectation maximization [10]. Some
photometric stereo methods explicitly model surface reflectances with paramet-
ric BRDFs. Georghiades [11] use the Torrance-Sparrow model [12] for specular
fitting, and Goldman et al . [13] build their methods on the Ward model [2].

For surfaces with general reflectance, various properties have been exploited
to estimate surface normal, such as radiance similarity [14] and attached shadow
codes [15]. Higo et al .’s method [16] uses monotonicity and isotropy of general
diffuse reflectances. Alldrin and Kriegman [3] show that the azimuth angle of
normal can be reliably estimated for isotropic materials using reflectance sym-
metry, if lights locate on a view-centered ring. Later, their method is extended
to solve for both shape and reflectance by further restricting the BRDF to be
bivariate [17]. Based on the symmetry property, a comprehensive theory is devel-
oped in [18], and a surface reconstruction method using a special lighting rig is
introduced in [19]. By focusing on the low-frequency reflectance, the biquadratic
model [20] can also be applied to solve the problem here.

We exploit reflectance monotonicity to compute the per-pixel elevation angle
of surface normal given estimated azimuth angles using [3]. Unlike [17]’s ap-
proach that involves complex optimization for iteratively estimating shape and
reflectance, our method avoids the complex optimization by taking the advan-
tages of the monotonicity from the 1-lobe BRDFs.

3 Elevation Angle Estimation

Assume that we have already known the azimuth angles of surface normal. For
example, we can use the method in [3] to obtain the azimuth angles first, while
our method is not limited to a particular azimuth angle estimation method.
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Fig. 1. Coordinate system and key variables

Given the azimuth angles, our method performs 1-D search for determining the
elevation angles ranging from 0 to π/2 for visible normals.

3.1 1-lobe BRDF

We use bold letters to denote unit 3-D vectors. l and v represent the lighting
and viewing directions, respectively, and h is their unit bisector. For photomet-
ric stereo, we use the view-centered coordinate system with v = (0, 0, 1)T . As
illustrated in Fig. 1, we use spherical coordinates (θ, φ) and (θl, φl) to represent
surface normal n and lighting direction l respectively.

The semi-parametric model proposed in [4] suggests that BRDFs can be well
represented by the summation of several lobes in the form of ρ(nTk), where
ρ(·) is a monotonically increasing function, and k is referred as a projection
direction. We further assume a dominant lobe (weighting is larger than other
lobes) of ρ(nTh) exists. We analyze the monotonicity of this lobe, and use this
property for determining elevation angles.

3.2 BRDF Profile

At a scene point, each hypothesized elevation angle θ′ uniquely determines a
normal direction n′, which in turn leads to multiple hypothesized BRDF values
by dividing the observed scene radiance with the foreshortening term n′T l. For
simplicity, we refer to these BRDF values across varying n′Th as a BRDF profile.
Given the observed scene radiance i at a pixel, the hypothesized BRDF profile
ρ′ is computed as

ρ′(n′Th) =
i

n′T l
= ρ(nTh)

nT l

n′T l
. (1)

We prove that ρ′ is only monotonic w.r.t. n′Th when n′ is the correct surface
normal direction (i.e., θ′ is the correct elevation angle θ), except for some degen-
erate lighting configurations. Based on this, we find the correct elevation angle
θ using the monotonicity of the BRDF profile ρ′.
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3.3 Monotonicity of the BRDF Profile

Consider two different lighting directions l1 and l2, and their associated half-
vectors h1 and h2. Without loss of generality, we assume a surface normal with
the azimuth angle φ = 0 and elevation angle θ, i.e., n = (cos θ, 0, sin θ)T . The
hypothesized elevation angle θ′ leads to n′ = (cos θ′, 0, sin θ′)T . For notation
simplicity, we define x1 = nTh1, x2 = nTh2, x

′
1 = n′Th1, x

′
2 = n′Th2 and y1 =

ρ(x1), y2 = ρ(x2), y′1 = ρ′(x′1), y′2 = ρ′(x′2).
If ρ is a monotonically increasing function1, the following condition holds: for

x1 < x2, we have y1 < y2. There are two cases when ρ′ becomes non-monotonic:

1. The ordering of x is swapped, but y is not swapped: x′1 > x′2 and y′1 < y′2;
2. The ordering of y is swapped, but x is not swapped: x′1 < x′2 and y′1 > y′2.

In the following, we first discuss the conditions for reordering of x and y respec-
tively (which we call x-swap and y-swap for short hereafter), and then analyze
under what condition an incorrect estimate of the elevation angle θ′ will break
the monotonicity of ρ′.

Note here we focus on the case of two observations under lighting directions
l1 and l2. In a photometric stereo setting, we often have far more than two input
observations. The discussion applies to any pair of observations: ρ′ becomes non-
monotonic, if any observation pair breaks its monotonicity.

Necessary and Sufficient Condition for x-swap. Suppose that the ordering
of x is changed by the hypothesized θ′, i.e., (x1 − x2)(x′1 − x′2) = (nTh1 −
nTh2)(n′Th1−n′Th2) < 0. From the definition of h and v = (0, 0, 1)T , we have

h =
l + v

‖l + v‖
=

(lx, ly, lz + 1)T√
l2x + l2y + (lz + 1)2

=
(lx, ly, lz + 1)T√

2 + 2lz
. (2)

After some simple derivations, we have

nTh1 =
1√

2 + 2l1z
((l1z + 1) sin θ + l1x cos θ) . (3)

nTh2 can be computed in a similar way, and their difference becomes

nTh1 − nTh2 = A sin θ +B cos θ =
√
A2 +B2 sin(θ + α), (4)

where A = l1z+1√
2+2l1z

− l2z+1√
2+2l2z

, B = l1x√
2+2l1z

− l2x√
2+2l2z

, and α = arctan B
A , α ∈

[−π/2, π/2]. We obtain a similar equation for n′ by replacing θ in Eq. (4) with
θ′.

Therefore the necessary and sufficient condition to change the ordering of x
is (nTh1 − nTh2)(n′Th1 − n′Th2) = sin(θ + α) sin(θ′ + α) < 0. In other words,

1 We discuss only the monotonically increasing case in this paper. The similar analysis
can also be applied to monotonically decreasing case.
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sin(θ+α) and sin(θ′+α) should have different signs. This condition is true only
when α < 0 and θ < −α < θ′ (or, θ′ < −α < θ), since θ and θ′ are both within
[0, π/2], and α is within [−π/2, π/2]. Note that α is completely determined by
the two lighting directions l1 and l2, and independent of θ and θ′. Hence, a larger
difference between θ and θ′ gives higher possibility for an x-swap to happen.

Sufficient Condition for y-swap. Next, we consider when the ordering of
y will be changed, i.e., we discuss the case where y1 < y2 and y′1 > y′2. We
assume that l1 is close to l2 such that ρ(nTh1) is close to ρ(nTh2). This is
true when lighting is dense and neighboring lighting directions are sampled,
and lighting directions do not cause the highlight reflection at n. Note that by
focusing on nearby lighting directions, we can only derive the sufficient condition
for swapping the ordering of y, because there could be two parted lights causing
y-swap to happen. Under these assumptions and according to Eq. (1), y′ is
mainly determined by nT l/n′T l. For l1, we obtain

nT l1
n′T l1

=
l1x cos θ + l1z sin θ

l1x cos θ′ + l1z sin θ′
=

sin(θ + β1)

sin(θ′ + β1)
, tanβ =

l1x
l1z
. (5)

From the relationship sin(θ+β1)
sin(θ′+β1)

> sin(θ+β2)
sin(θ′+β2)

> 0, we can derive the sufficient

condition for y-swap as

(θ′ − θ)l12y < 0. (6)

Here, l12y is y-component of the cross product of l1 and l2. The derivation can
be found in the Appendix. Eq. (6) indicates that the ordering of y depends on
two factors: (1) the sign of (θ′ − θ), i.e., the hypothesized θ′ is larger or smaller
than the true value, and (2) the relative positions of the two lights l1 and l2.

Sufficient Condition for Unique Solution. For any hypothesized θ′, if it
swaps the ordering of y (or, x) while keeps the ordering of x (or, y) unchanged,
the function ρ′ will become non-monotonic. Hence, if we can ensure an incorrect
θ′ will always break the monotonicity of ρ′, we can find the correct elevation
angle θ by choosing the θ′ that makes ρ′ monotonic.

For a monotonically increasing ρ, we have x1 = nTh1 < x2 = nTh2, or equiv-
alently θh1 > θh2. We begin with the case where lights are densely distributed
along the same longitude as the normal n, i.e., φl = φ = 0. Since we require
θh1 > θh2, h2 is closer to n than h1. Further, as illustrated in Fig. 2, h1 and h2

are restricted on the red dotted line when the lighting directions l1 and l2 move
on the green dotted line. By observing the geometric relationship between h and
l, we obtain the following results:

1. As shown in Fig. 2(a), if θ ≤ π/4, we always have θl1 > θl2 (l1 is closer to v
than l2). This ensures l12y > 0. Then from Eq. (6), y-swap always happens if
the hypothesized θ′ becomes θ′ < θ. In contrast, y-swap might not2 happen
when θ′ > θ;

2 Because we only have the sufficient condition for y-swap.
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Fig. 2. Lights, half-vectors and normal on the same longitude. (a) θ ≤ π/4; (b) θ > π/4.
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Fig. 3. (a) α values for φl = 0 and θl1, θl2 ∈ [0, π/2]; (b) max(α) values for φl ∈ (0, π/2].

2. As shown in Fig. 2(b), if θ > π/4, the relative positions of l1 and l2 cannot
be determined from θh1 > θh2. There are two cases: (1) If h1 and h2 are
both farther from v than n, we should have θl2 > θl1 (l2 is closer to v than
l1). Hence, l12y < 0; (2) If h1 and h2 are both closer to v than n, we should
have θl1 > θl2 (l1 is closer to v than l2, which is a similar case as Fig. 2(a)).
Hence, l12y > 0. When lights are densely distributed along the longitude,
we can always find a pair of lights satisfying these two cases. As a result,
Eq. (6) can hold to cause y-swap no matter what θ′ is.

Now we know y-swap might not happen when θ ≤ π/4 and θ′ > θ. In
the next, we analyze when x-swap happens. If both swaps do not happen, an
incorrect estimate of the elevation angle θ′ will not break the monotonicity of ρ′,
and we cannot tell whether that θ′ is correct or not. Due to the complexity of
the analytic form of α, we simulate and plot all α values for all combinations of
l1 and l2 on the same longitude as n in Fig. 3(a). It is interesting to note that α
continuously changes in [−π/2,max(α)], where max(α) ≈ −π/4. In other words,
−α covers the whole range of [−max(α), π/2]. Recall that the necessary and
sufficient condition for x-swap to happen is that θ′ < −α < θ (or, θ < −α < θ′).
Thus, if both θ′ and θ are smaller than −max(α), x-swap will never happen.

Combining the conditions that both x-swap and y-swap do not happen, we
conclude θ′ ∈ [θ,−max(α)] is the degenerate interval for normals with φl = 0,
where the monotonicity of ρ′ is not broken by any incorrect θ′.
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Next, we consider lights along other longitudes, i.e. φl ∈ (0, π/2]. The same
analysis can be applied, and similarly, the monotonicity of ρ′ is not broken by
any incorrect θ′ within the degenerate interval [θ,−max(α)φl

]. Here, −max(α)φl

depends on the azimuth angle of lighting directions at the longitude φl. We plot
it as a function of φl for those longitudes in Fig. 3(b). We find that max(α)
increases from about −π/4 to 0 when φl approaches π/2. Since monotonicity of
ρ′ is lost if any pair of lights on a longitude can break its monotonicity, the final
degenerate interval is the intersection of all degenerate intervals [θ,−max(α)φl

]
from each longitude. This makes the final intersection of the interval an empty
set, because −max(α)φl

approaches 0. In other words, if we have lights on all
longitudes with azimuth angles φl ∈ [0, π/2], we can uniquely determine the
elevation angle θ for normals with φ = 0.

To recover the elevation angle of arbitrary surface normals, we will need
lights spanned all longitudes that cover the whole hemisphere. These lights form
a dense and uniform distribution over the hemisphere. In practice, we capture
images under random lighting directions that approximate the uniformity.

4 Solution Method

We perform a 1-D search for θ within [0, π/2] at each pixel. For each hypothe-
sized value θ′, we assess the reflectance monotonicity. Specifically, we compute
the hypothesized BRDF values y′ and evaluate its monotonicity w.r.t. to x′.
To measure the reflectance monotonicity, we calculate the derivatives (discrete
differentiation) of y′ and sum up the absolute values of negative derivatives,
denoted as δ(θ′):

δ(θ′) =
∑
x′

max

(
−d y′

dx′
, 0

)
, (7)

The cost δ penalizes monotonically decreasing sequence, i.e., a larger δ value
indicates a less monotonically increasing y′. We show a typical cost function in
Fig. 4 for a normal with θ = π/6 and φ = 0. Fig. 4(a) is the cost computed
where all lights locate on the same longitude as the normal. As we have proved
in Sec. 3.3, there is a degenerate interval for θ′ ∈ [θ,−max(α)]. Indeed, our
cost function is almost a constant value in [π/6, π/4], and we cannot tell which
value within this interval is the correct elevation angle. Fig. 4(b) shows the cost
computed with lights distributed on the whole hemisphere. It has a clear global
minimum to estimate the elevation angle.

The complete normal estimation algorithm is summarized as Algorithm 1.
There are a few implementation details: (1) We discard shadows by simple
thresholding. For scene radiance values normalized to 1, we use a threshold
i0 = 10−6 for synthetic data, and in real data the threshold is manually chosen
through cross validation (typically set as 0.02 in our experiments); (2) When cal-
culating y′, we set it as a big value (i∞ = 1010), if n′T l ≤ 0; (3) When evaluating
the monotonicity, we apply a monotonic mapping as y′ ← y′γ (γ is empirically
determined as 5 in all experiments) for a data normalization purpose.
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Fig. 4. Cost function for θ′ ∈ [0◦, 90◦] (normalized by f(·) shown in the right bottom
for visualization purpose). (a) Using lights on the same longitude as normal; (b) Using
lights covering the whole hemisphere.

Algorithm 1 Photometric Stereo for General Isotropic Reflectances

INPUT: Scene radiance values i, lighting directions l, threshold i0, i∞.
Compute the azimuth angle of normal φ using the method in [3];
for each pixel do

for θ′ ∈ [0, π/2] do
Let n′ = (cos θ′ cosφ, cos θ′ sinφ, sin θ′)T ;
Calculate y′ based on Eq. (1);
If any l causes y ≤ i0 (in shadow), set its corresponding y′ = i0;
If any n′T l ≤ 0, set its corresponding y′ = i∞;
Order y′ = i/(n′T l) w.r.t. x′ = n′Th;
Evaluate the cost values using Eq. (7);

end for
θ = argmin

θ′
δ(θ′);

n = (cos θ cosφ, cos θ sinφ, sin θ)T ;
end for
OUTPUT: Normals for all pixels.

5 Experiments

We evaluate the accuracy of elevation angle estimation using all the 100 materials
in the MERL BRDF database [5], also with varying number of lights. Synthetic
experiments using 2-lobe BRDFs are performed to assess the robustness of our
method against the deviation from the 1-lobe BRDF assumption. Finally, we
show our normal estimates on real data.

5.1 Synthetic Data

Performance on Measured BRDFs. We sample 1620 normal directions from
the visible hemisphere by uniformly choosing 36 longitudes and 45 altitudes. We
generate their observations under 337 lighting directions uniformly sampled on
the hemisphere. For the sampling, we use the vertices defined by an icosahedron
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Fig. 5. Elevation angle errors (degree) on 100 materials (ranked by errors in a descend-
ing order). Rendered spheres of some representative materials and their BRDF values
in the ρ-nTh space are shown near the curve. The spheres in the ρ-nTh plots show
the 1-D projection RMS errors using all the directions on the hemisphere (dark blue
means small, and red means large errors).

with a tessellation order of three. The average elevation angle errors of the 1620
samples for all materials in the MERL BRDF database are summarized in Fig. 5.
The average error on all the 100 materials is 0.77◦ from the ground truth.

We observe that the error is relatively large for materials that cannot be
well represented by a monotonic 1-lobe BRDF with half-vector as the projection
direction, for example the material A and B in Fig. 5 (see the ρ-nTh plot above
the rendered spheres). For those materials, their optimal 1-lobe BRDF repre-
sentations have a much different projection direction from h (see the spheres
of RMS error distribution in the ρ-nTh plots). Therefore, if we force them to
project on h and apply our method, the results have relatively larger errors.

Performance with Varying Number of Lights. Next, we evaluate the sys-
tem performance variation with different numbers of lighting directions (input
images). We perform the same experiment using 25, 50, 100 and 200 random
lighting directions. The errors and light distributions are shown in Fig. 6. Em-
pirically, about 100 random lights provide average elevation angle error of around
1◦. Thus in the following test, we fix the number of lights to 100.

Performance on 2-lobe BRDFs. To demonstrate the robustness of our
method, we evaluate our method on synthetic data using 2-lobe BRDFs in Fig. 7.
The weighting of the two lobes k1 and k2 are varied from 0 to 1. Fig. 7(a) shows
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Fig. 6. Average elevation angle errors (degree) on 100 materials varying with the num-
ber of lighting directions. Next to the curve, the blue dots on spheres show the light
distribution in each case.
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Fig. 7. Elevation angle errors (degree) on 2-lobe BRDFs. (a) The Cook-Torrance mod-
el, where k1 is the Lambertian and k2 is the specular strength; (b) k1ρ1(nTv) +
k2ρ2(nT (v + 2l)); (c) k1ρ1(nTh) + k2ρ2(nTk), where k is a random direction.

our result on the Cook-Torrance model [21] (roughness m = 0.5) with a Lamber-
tian diffuse lobe and a specular lobe. Note the specular lobe of the Cook-Torrance
model is not centered at h. However, our method always gives accurate result
for different relative strength of the two lobes. The error in estimated elevation
angles is the largest (about 1◦) when BRDF is completely dominated by the
specular lobe.

As discussed in [4], some fabric materials contain lobes with projection direc-
tion v or (v + 2l). Hence, we deliberately create such a BRDF as k1ρ1(nTv) +
k2ρ2(nT (v + 2l)) and evaluate our method on this BRDF. Note both lobes are
not centered at h. Here, ρ1(x) = ρ2(x) = x. In Fig. 7(b), we plot the elevation
angle errors for different values of k1, k2. The errors are smaller than 3◦ for most
of the combinations.

At last, we create a 2-lobe BRDF k1ρ1(nTh) + k2ρ2(nTk) by combining a
lobe centered at h and another one with a random direction k. k is a randomly
sampled direction on the sphere for each pixel under each lighting direction. The
elevation angle errors are shown in Fig. 7(c). We can observe that for more than
half of all cases, our method generates errors smaller than 5◦. Our method can
work reasonably well with errors smaller than 3◦ when the relative strength of
the random lobe is below 0.3.
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(a) (b) (c) (d) (e)

Fig. 8. Results on Gourd1 (102) (The number in the bracket indicates the number of
images in the dataset.) [17]. (a) One input image; (b), (c) Our normal and Lambertian
shading; (d), (e) Normal and shading from Lambertian photometric stereo. Note that
(b) and (d) have an average angular difference of about 12◦.

Normal: r: (x+1)/2; g: (y+1)/2; b:z

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Fig. 9. Results on Apple (112) [17]. (a) One input image; (b), (c) Our normal and
reconstructed surface; (d), (e) Normal and surface shown in paper [17]. Note here we
use the color mapping of ((nx + 1)/2, (ny + 1)/2, nz) → (R,G,B) for a comparison
purpose. The shapes look different partially due to we do not know exactly the same
reconstruction method and rendering parameters used in [17].

5.2 Real Data

We show the estimated normals by our method on real data. We visualize the
estimated normals by linearly encoding the x, y and z components of normals
in RGB channels of an image (except for the Apple data in Fig. 9 for a com-
parison purpose). First, in Fig. 8, our method is compared with the Lambertian
photometric stereo [1] by showing the estimated normals and the Lambertian
shadings calculated from the estimated normals with the same lighting direc-
tion as the input image. For such non-Lambertian materials, our method shows
much more reasonable normal estimates. Next, we compare with the method
in [17] by showing the surface reconstructions (according to the method in [22])
from the estimated normals in Fig. 9(b). Due to the lack of the ground truth,
we cannot make a quantitative comparison, but qualitatively, our method shows
similar results as [17]. In terms of the complexity, our method is much simpler
and computationally inexpensive for deriving the elevation angle.

Finally, we show our estimated normals on other materials with various re-
flectances, such as plastic, metal, paint, etc., as shown in Fig. 10. The datasets
on the left side are from [17] and [23]; right part of the datasets are captured by
ourselves with a Sony XCD-X710CR camera. By comparing the input images
and the Lambertian shadings, we claim our estimated normals are of high ac-
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Fig. 10. Real data results. Left part: Gourd2 (98) [17], Helmet side right (119) (We
use only 119 out of all the 253 images in the original dataset.) [23], Kneeling Knight
(119) [23]; Right part: Pear (77), God (57), Dinosaur (118). We show one input
image, the estimated normals and the Lambertian shadings for each dataset.

curacy. Some noisy points observed on the results are mainly caused by pixels
with too dark intensities and hence low signal-to-noise ratio.

6 Conclusions

We show a method for estimating elevation angles of surface normal by exploit-
ing reflectance monotonicity given the azimuth angles. We assume the BRDF
contains a dominant monotonic lobe projected on the half-vector, and prove that
the elevation angle can be uniquely determined under dense lights uniformly dis-
tributed on the hemisphere. In synthetic experiments, we first demonstrate the
accuracy of our method on a broad category of materials. We further evaluate its
robustness to deviations from our assumption about BRDFs. Various real-data
experiments also show the effectiveness of the proposed method.

Limitations. Our method assumes known azimuth angles. Joint estimation
of both azimuth and elevation angles makes the problem prohibitively difficult
due to its highly non-linear nature of the problem. When the assumed azimuth
angles are not accurate, the elevation angle estimation will be deteriorated ac-
cordingly. For example, in the experiment of Fig. 5, the average elevation angle
errors over 100 materials increase to {1.16, 2.24, 3.32, 4.72} degrees with additive
azimuth angle errors normally distributed with mean 0 and standard deviation
{0.5, 1, 1.5, 2} degrees, respectively. To make the proposed method robust against
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inaccuracy of azimuth angles is an interesting direction. Besides, while we have
discussed only the sufficient condition, deriving a compact lighting configuration
that uniquely determines the elevation angles is our future work.
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Appendix: Proof of Eq. (6)

Proof. If nT l > 0 and n′T l > 0, from Eq. (5), the following holds:

sin(θ + β1)

sin(θ′ + β1)
>

sin(θ + β2)

sin(θ′ + β2)
> 0.

Therefore, we have

sin(θ + β1) sin(θ′ + β2)− sin(θ′ + β1) sin(θ + β2) > 0.

By applying the product-to-sum trigonometric identities, it is simplified as

cos(θ − θ′ + β1 − β2)− cos(θ′ − θ + β1 − β2) > 0.

This further becomes as following by applying the sum-to-produce identities:

sin(θ′ − θ) sin(β1 − β2) > 0.

Since θ, θ′ ∈ [0, π/2], we can use (θ′ − θ) to replace sin(θ′ − θ) with inequality
retained. From the definition of tanβ, we have the following relation

sin(β1 − β2) = sin(β1) cos(β2)− cos(β1) sin(β2)

= l1x√
l21x+l

2
1z

l2z√
l22x+l

2
2z

− l1z√
l21x+l

2
1z

l2z√
l22x+l

2
2z

.

This indicates the sign of sin(β1 − β2) is the same as l1xl2z − l1zl2x = l2 × l1 =
−l12y. Therefore, the inequality of Eq. (6) holds. �


