
Bayesian Depth-from-Defocus with Shading Constraints

Chen Li1 Shuochen Su3 Yasuyuki Matsushita2 Kun Zhou1 Stephen Lin2

1State Key Lab of CAD&CG, Zhejiang University 2Microsoft Research Asia 3Tsinghua University

Abstract

We present a method that enhances the performance
of depth-from-defocus (DFD) through the use of shading
information. DFD suffers from important limitations –
namely coarse shape reconstruction and poor accuracy on
textureless surfaces – that can be overcome with the help of
shading. We integrate both forms of data within a Bayesian
framework that capitalizes on their relative strengths. Shad-
ing data, however, is challenging to recover accurately from
surfaces that contain texture. To address this issue, we pro-
pose an iterative technique that utilizes depth information
to improve shading estimation, which in turn is used to ele-
vate depth estimation in the presence of textures. With this
approach, we demonstrate improvements over existing DFD
techniques, as well as effective shape reconstruction of tex-
tureless surfaces.

1. Introduction

Depth-from-defocus (DFD) is a widely-used technique
that utilizes the relationship between depth, focus setting,
and image blur to passively estimate a range map. A pair
of images is typically acquired with different focus settings,
and the differences between their local blur levels are then
used to infer the depth of each scene point. In contrast to
active sensing techniques such as 3D scanning, DFD does
not require direct interaction with the scene. Additionally,
it offers the convenience of employing a single stationary
camera, unlike methods based on stereo vision.

With the rising popularity of large format lenses for high
resolution imaging, DFD may increase in application due
to the shallow depth of field of such lenses. However, there
exist imaging and scene factors that limit the estimation ac-
curacy of DFD. Among these is the limited size of lens aper-
tures, which leads to coarse depth resolution. In addition to
this, depth estimates can be severely degraded in areas with
insufficient scene texture for measuring local blur levels.

We present in this paper a technique that aims to mit-
igate the aforementioned drawbacks of DFD through the
use of shading information. In contrast to defocus blur,
shading not only indicates the general shape of a surface,

but also reveals high-frequency shape variations that allow
shape-from-shading (SFS) methods to match or exceed the
level of detail obtainable by active sensing [10, 32]. We
therefore seek to capitalize on shading data to refine and
correct the coarse depth maps obtained from DFD. The
utilization of shading in conjunction with DFD, however,
poses a significant challenge in that the scene texture gener-
ally needed for DFD interferes with the operation of shape-
from-shading, which requires surfaces to be free of albedo
variations. Moreover, DFD and SFS may produce incon-
gruous depth estimates that need to be reconciled.

To address these problems, we first propose a Bayesian
formulation of DFD that incorporates shading constraints
in a manner that locally emphasizes shading cues in areas
where there are ambiguities in DFD. To enable the use of
shading constraints in textured scenes, this Bayesian DFD
is combined in an iterative framework with a depth-guided
intrinsic image decomposition that aims to separate shad-
ing from texture. These two components mutually ben-
efit each other in the iterative framework, as better depth
estimates lead to improvements in depth-guided decompo-
sition, while more accurate shading/texture decomposition
amends the shading constraints and thus results in better
depth estimates.

In this work, the object surface is assumed to be Lamber-
tian, and the illumination environment is captured by imag-
ing a sphere with a known reflectance. Our experiments
demonstrate that the performance of Bayesian DFD with
shading constraints surpasses that of existing DFD tech-
niques over both coarse and fine scales. In addition, the use
of shading information allows our Bayesian DFD to work
effectively even for the case of untextured surfaces.

2. Related Work

Depth-from-defocus There exists a substantial amount of
literature on DFD, beginning with works that handle objects
whose brightness consists of step edges [18, 25, 9]. Since
the in-focus intensity profile of these edges is known, their
depth can be determined from the edge blur. Later methods
have instead assumed that object surfaces can be locally ap-
proximated by a plane parallel to the sensor [33, 26, 30],
such that local depth variations can be disregarded in the
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estimation. Some techniques utilize structured illumination
to deal with textureless surfaces and improve blur estima-
tion [15, 14, 29]. DFD has been formulated as a Markov
random field (MRF) problem, which allows inclusion of
constraints among neighboring points [21, 22, 20]. Defo-
cus has also been modeled as a diffusion process that does
not require recovery of the in-focus image when estimating
depth [6].

Shape-from-shading Considerable work has also been
done on shape-from-shading. We refer the reader to the
SFS surveys in [34, 5], and review only the most rele-
vant methods here. SFS has traditionally been applied un-
der restrictive settings (e.g., Lambertian surfaces, uniform
albedo, directional lighting, orthographic projection), and
several works have aimed to broaden its applicability, such
as to address perspective projection [19], non-Lambertian
reflectance [16], and natural illumination [10, 8]. Non-
uniform albedo has been particularly challenging to over-
come, and has been approached using smoothness and en-
tropy priors on reflectance [3]. Our work instead takes ad-
vantage of defocus information to improve estimation for
textured surfaces. Shape-from-shading has also been used
to refine the depth data of uniform-albedo objects obtained
by multi-view stereo [32]. In our method, SFS is used in the
context of DFD with scenes containing albedo variations.

Intrinsic images Intrinsic image decomposition aims to
separate an image into its reflectance and shading compo-
nents. This is an ill-posed problem, since there are twice
as many unknowns (reflectance, shading) as observations
(image intensities) per pixel. The various approaches that
have been employed make this problem tractable through
the inclusion of additional constraints, such as those derived
from Retinex theory [11], trained classifiers [28], and mul-
tiple images under different lighting conditions [31]. De-
spite the existence of these different decomposition cues,
the performance of intrinsic image algorithms has in gen-
eral been rather limited [7]. Recently, range data has been
exploited to provide strong constraints for decomposition,
and this has led to state-of-the-art results [12]. Inspired by
this work, we also utilize depth information to aid intrinsic
image decomposition. However, our setting is considerably
more challenging, since the depth information we start with
is very rough, due to the coarse depth estimates of DFD and
the problems of SFS when textures are present.

3. Approach
In this section, we present our method for Bayesian DFD

with shading constraints. We begin with a review of basic
DFD principles, followed by a description of our Bayesian
DFD model, our shading-based prior term, the method for

Figure 1. Imaging model used in depth-from-defocus.

handling surface textures, and finally the iterative algorithm
that integrates all of these components.

3.1. Basic principles of DFD

DFD utilizes a pair of images taken with different focus
settings. The effects of these focus settings on defocus blur
will be described in terms of the quantities shown in Fig. 1.
Let us consider a scene point P located at a distance d from
the camera lens. The light rays radiated from P to the cam-
era are focused by the lens to a point Q according to the thin
lens equation:

1

d
+

1

vd
=

1

F
, (1)

where vd is the distance of Q from the lens, and F is the
focal length. When the focus setting v, which represents
the distance between the lens and sensor plane, is equal to
vd, the rays of P converge onto a single point on the sensor,
and P is thus in focus in the image. However, if v ̸= vd, the
focused point Q does not lie on the sensor plane, and P then
appears blurred because its light is distributed to different
points on the sensor. Because of the rotational symmetry of
lenses, this blur is in the form of a circle. The radius b of
this blur circle can be geometrically derived as

b =
Rv

2

∣∣∣∣ 1F − 1

v
− 1

d

∣∣∣∣ , (2)

where R is the radius of lens. As seen from this equation,
there is a direct relationship between depth d and blur radius
b for a given set of camera parameters.

The light intensity of P within the blur circle can be ex-
pressed as a distribution function known as the point spread
function (PSF), which we denote by h. In this paper, we
model the PSF h using a 2D Gaussian function [18]:

h(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 (3)

with standard deviation σ = γb where the constant γ can
be determined by calibration [9]. Using the PSF, we can
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express the irradiance I measured on the image plane as the
following convolution:

I(x, y) = If ∗ h(x, y, b), (4)

where If is the all-focused image of the scene, such as that
captured by a pinhole camera.

In DFD, we have two images, I1 and I2, which are cap-
tured at the same camera position but with different focus
settings, v1 and v2:

I1(x, y) = If ∗ h(x, y;σ1),
I2(x, y) = If ∗ h(x, y;σ2),

(5)

where σ1 = γ ∗ b1 and σ2 = γ ∗ b2. Without loss of gener-
ality, assume that σ1 < σ2. I2 can then be expressed as the
following convolution on I1

I2(x, y) = I1(x, y) ∗ h(x, y;∆σ), (6)

where ∆σ2 = σ2
2 −σ1

2. In the preceding equations, it can
be seen that the defocus difference, ∆σ, is determined by
the depth d and the two known focal settings v1 and v2, so
Eq. (6) can be represented as

I2(x, y) = I1(x, y) ∗ h(x, y, d), (7)

where d is the depth of pixel Px,y.
Based on Eq. (7), most DFD algorithms solve for depth

by minimizing the following energy function or some vari-
ant of it:

argmin
d

(I1(x, y) ∗ h(x, y, d)− I2(x, y))
2. (8)

3.2. Bayesian depthfromdefocus model

We now formulate the DFD problem within a Bayesian
framework and obtain a solution using a Markov ran-
dom field (MRF). A basic review of Bayesian models and
Markov random fields can be found in [4, 17]. MRF-based
solutions of DFD have also been used in [22, 20], and a
Bayesian analysis of the larger light-field problem was ad-
dressed in [13].

Let i = 1, . . . , N index a 2D lattice G(ν, ε) of im-
age pixels, where ν is the set of pixels and ε is the set
of links between pixels in a 4-connected graph. In corre-
spondence with G, let d = (d1, d2, .., dN ) denote values of
the depth map D, and let I(1) = (I

(1)
1 , I

(1)
2 , . . . , I

(1)
N ) and

I(2) = (I
(2)
1 , I

(2)
2 , . . . , I

(2)
N ) be the observations at the pix-

els. Depth estimation can then be formulated as a maximum
a posteriori estimation problem, expressed using Bayes’
theorem as follows:

d̂ = argmax
d

P (d|I(1), I(2)) (9)

= argmax
d

P (I(1), I(2)|d)P (d)

= argmin
d

[
L(I(1), I(2)|d) + L(d)

]

where P (d) is the prior distribution of depth map d,
P (I(1), I(2)|d) is the likelihood of observations I(1), I(2),
and L is the log likelihood of P , i.e. L = − logP .

The likelihood term can be modeled as the basic DFD
energy from Eq. (8), and the prior term as depth smoothness
along the links [22]:

L(I(1), I(2)|d) =
∑
i∈ν

(I
(1)
i ∗ h(i, d)− I

(2)
i )2, (10)

L(d) = λ
∑

(i,j)∈ε

(di − dj)
2. (11)

Hereafter, this particular formulation will be referred to as
standard DFD.

To optimize the MRF model of Eqs. (10)-(11), we use
the max-product variant of the belief propagation algo-
rithm [27], with a message update schedule that propagates
messages in one direction and updates each node immedi-
ately.

3.3. Shadingbased prior term

The smoothness prior of Eq. (11) can reduce noise in
the reconstructed depth, but does not provide any additional
knowledge about the scene. We propose to use a more in-
formative prior based on the shading observed in the DFD
image pair, which is helpful both for reconstructing surfaces
with little texture content and for incorporating the fine-
scale shape details that shading exhibits. In this section,
we consider the case of uniform-albedo surfaces, for which
shading can be easily measured. The more complicated case
of textured surfaces will be addressed in Sections 3.4-3.5.

Lambertian shading can be modeled as a quadratic func-
tion of the surface normal [23, 10]:

s(n) = nTMn, (12)

where nT = (nx, ny, nz, 1) for surface normal n, and M is
a symmetric 4× 4 matrix that depends on the lighting envi-
ronment. With this shading model, we solve for the surface
normal of each pixel using the method in [10]. We also
obtain the 3D coordinates for each point by re-projecting
each pixel into the scene according to its image coordinates
(x, y), depth value d from DFD, and the perspective projec-
tion model: ((

x− w

2

)
ud,

(
y − h

2

)
ud, d

)
,

where w×h is the resolution of the image, and u is the pixel
size.

For each pair of linked pixels i, j in the MRF, we now
have their depths di, dj , 3D positions pi,pj , and normals
ni,nj . Since the vector −−→pipj should be perpendicular to
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(a) (b) (c)
Figure 2. Effect of different prior terms on DFD. (a) Original im-
age (synthesized so that ground truth depth is available). (b/c)
Close-up of depth estimates for the red/green box in (a). From
top to bottom: DFD with no prior, the smoothness prior, and the
shading-based prior, followed by the ground truth depth.

the normal direction ni + nj , we formulate the shading-
based prior term as

L(d) = λ
∑

(i,j)∈ε

(
(pj − pi)

T ni + nj

∥ni + nj∥

)2

. (13)

where ε denotes the set of 4-connected neighbors over the
MRF. DFD with this shading-based prior in place of the
smoothness prior will be referred to as DFD with shading
constraints.

In the practical application of this shading constraint, we
have a pair of differently focused images from which to ob-
tain the shading data. The most in-focus parts of the two
images are combined into a single image by focal stack-
ing using Microsoft Research’s Image Composite Editor
(ICE) [1], which also automatically aligns different mag-
nifications among the defocused images. This image is then
used for surface normal estimation, with the lighting en-
vironment measured using a sphere placed in the scene as
done in [10].

As shown in Fig. 2, the incorporation of shading con-
straints leads to improvements in DFD, especially in areas
with little intensity variation. Such areas have significant
depth ambiguity in DFD, because the likelihood energy in
Eq. (10) varies little with respect to estimated depth. In such
cases, DFD needs to rely on a prior term to obtain a distinct
solution. The simple smoothness prior of Eq. (11) helps by
using the depths of neighbors as a constraint, but this may
blur high frequency details. By contrast, the shape-based
prior term of Eq. (13) provides fine-scale shape information
that more effectively resolves uncertainties in DFD.

3.4. Texture Handling

Shading information becomes considerably more diffi-
cult to extract from an image when its surfaces contain tex-

ture. This problem arises because the brightness variations
from shading and texture are intertwined in the image inten-
sities. To separate shading from texture, methods for intrin-
sic image decomposition solve the following equation for
each pixel p:

ip = sp + rp, (14)

where i, s and r are respectively the logarithms of the image
intensity, shading value, and reflectance value.

In this paper, we decompose an image into its shading
and reflectance components with the help of shape infor-
mation provided by DFD. The method we employ is based
on the work in [12], which uses streams of video and depth
maps captured by a moving Kinect camera. In contrast to
their work, we do not utilize temporal constraints on the
decomposition, since video streams are unavailable in our
setting. Also, we are working with depth data that is often
of much lower quality.

The decomposition utilizes the conventional Retinex
model with additional constraints on non-local re-
flectance [24] and on similar shading among points that
have the same surface normal direction. Let Ω be the set
of all pixels, ℵ be the set of 8-connected pixel pairs, Gr(p)
be the set of pixels having a similar local texture pattern as
p (computed as in [24]), and Gs(p) be the set of pixels with
the same surface normal as p. Then the shading component
of the image is computed through the following minimiza-
tion:

argmin
s

∑
(p,q)∈ℵ

[
ωp,q

s(sp − sq)
2 + ωp,q

r((ip − sp)− (iq − sq))
2
]

+
∑
p∈Ω

∑
q∈Gr(p)

[
ωnlr((ip − sp)− (iq − sq))

2
]

+
∑
p∈Ω

∑
q∈Gs(p)

[
ωnls(sp − sq)

2
]
, (15)

ωp,q
r =

{
ωr if (1− ĉTp ĉq) < τr,
0 otherwise

(16)

ωp,q
s =

{
ωs if (1− n̂T

p n̂q) < τr,
0.1ωs otherwise

(17)

where ĉ denotes chromaticity, n̂ denotes surface normal,
and ωr, ωnlr, ωs and ωnls are coefficients that balance the
local and non-local reflectance constraints, and local and
non-local shading constraints, respectively.

We note that Eq. (15) is a quadratic function which can
be simplified to a standard quadratic form:

argmin
s

1

2
sT As− bT s+ c. (18)

It is optimized in our implementation using the precondi-
tioned conjugate gradient algorithm.
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(a) (b) (c) (d) (e)
Figure 3. Depth and shading refinement in our iterative approach.
(a) Defocus pair. (b-d) Estimated shading (top) and depth (bottom)
for (b) first iteration, (c) middle iteration, (d) final iteration. (e)
Ground truth.

3.5. Iterative algorithm

The performance of depth-guided intrinsic image de-
composition depends on the accuracy of the input depth.
Likewise, the utility of shading constraints in DFD rests on
how well shading is extracted from the image. Since DFD
and intrinsic image decomposition facilitate each other, we
use them in alternation within an iterative framework. Each
iteration begins with the DFD step, followed by decompo-
sition. This cycle is repeated until the average change in
depth within each local region (which is partitioned in our
implementation by a 10x10 grid on the image) lies below a
threshold. We solved the MRF using a multi-scale refine-
ment with 200 depth labels per depth range and reducing
the range by 15% with each iteration. We used 15 iterations
which equivalently gives about 2000 depth labels in total.

Since the estimated shading and depth are less accurate
in earlier iterations, the parameters in DFD and decompo-
sition are set in each iteration to account for this. Initially,
the shading constraint weight λ in Eq. (13) for DFD and
the non-local shading coefficient ωnls in Eq. (15) for de-
composition are set to relatively low values (0.5 and 0.05,
respectively, in our implementation). At each subsequent it-
eration, both of these values are increased by a factor of 1.1
until reaching a maximum of twice the initial value, after
which these coefficients are no longer made larger.

As illustrated in Fig. 3, the iterations bring improvements
to both the estimated depth and shading. This iterative al-
gorithm has converged to a significantly better result for all
the examples we tested.

4. Results
We evaluated our method on synthetic and real images,

both with and without texture. The depth estimates of
our method are compared to those of three previous tech-

(a) (b) (c) (d)
Figure 4. Comparison of estimated normal maps. (a) From stan-
dard DFD. (b) From SFS with natural illumination [10]. (c) Com-
puted from our estimated depth maps. (d) Ground truth.
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(a) (b)
Figure 5. Depth error analysis. (a) For synthetic non-textured ob-
jects. (b) For synthetic textured objects.

niques: standard MRF-based DFD with smoothness con-
straints, DFD via diffusion [6], and the single-image SIRFS
method [3]1. In these experiments, a foreground mask is
used to discard the background, and depth maps are scaled
to the range of [0,1] for visualization.

4.1. Synthetic images

The first set of experiments uses synthetic data to provide
comparisons to ground truth. Three object models – Bud-
dha, feline and zebra [35] – are handled with and without
texture, under illumination from the Eucalyptus Grove envi-
ronment map [2, 23]. The defocus pair is rendered with blur

1The results for DFD via diffusion and SIRFS were
generated using the authors’ downloadable code at
http://home.eps.hw.ac.uk/˜pf21/pages/page4/page4.html and
http://www.cs.berkeley.edu/˜barron, respectively.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
Non-texture results Texture results

Figure 6. Synthetic data results. (a) Ground truth depth maps. (b/g) Non-textured/textured input defocus pairs. Depth estimate results for
(c/h) SIRFS [3], (d/i) DFD via diffusion [6], (e/j) standard DFD, (f/k) our method.

according to Eq. (2) and with the virtual camera parameters
set to F = 0.01, Fnum = 2.0, and γ = 1000000. The
two focal settings are chosen such that their focal planes
bound the ground truth depth map, and random Gaussian
noise with a standard deviation of 1.0 is added to simulate
real images.

The benefits of utilizing shading information with DFD
are illustrated in Fig. 4 for normal map estimation on tex-
tureless objects. Here, the normal maps are constructed
from gradients in the estimated depth maps. The uncertainty
of DFD in areas with little brightness variation is shown
to be resolved by the shading constraints. As we use the
method of SFS with natural illumination [10] to obtain sur-
face normals, our technique is able to recover a similar level
of shape detail.

Our depth estimation results are exhibited together with
those of the comparison techniques in Fig. 6. The aver-
age errors for each method within the foreground masks are
shown in Fig. 52. With the information in a defocus pair,
our method can obtain results more reliable than that of the

2DFD by diffusion does not work as well as standard DFD on our ob-
jects because its preconditioning is less effective when the intensity varia-
tions are not large.

single-image SIRFS technique. In comparison to the two
DFD methods, ours is able to recover greater shape detail
through the use of shading.

4.2. Real images

We also compared our method to related techniques us-
ing real images. As with the synthetic data, the comparison
methods are SIRFS [3], DFD via diffusion [6], and standard
DFD. The images were captured using a Canon 5D Mark II
camera with a 100mm lens. We mounted the camera on a
tripod and shot the images in RAW mode with the objects
about 50cm away.

In order to use our shading constraints, we first calibrate
the natural illumination using a white Lambertian sphere,
and then use the known surface normals of the sphere to
solve the shading matrix in Eq. (12) by least-squares opti-
mization. Because the albedo of the sphere may differ from
those of our target objects, we estimate the relative albedo
between target objects and the sphere simply by comparing
the brightness of manually identified local areas that have a
similar normal orientation. For objects with surface texture,
the albedo of the local area used in this comparison is used
as the reference albedo for the object.
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(a) (b) (c) (d) (e)
Figure 7. Real image results. (a) Input defocus pairs. Depth estimate results for (b) SIRFS [3], (c) DFD via diffusion [6], (d) standard
DFD, (e) our method.

The results for real images are shown in Fig. 7. The
first example is a plaster bust of uniform color. With the
SIRFS method, the depth variations on the body correctly
follow the object shape, but the head is shown to be closer
than it actually is. The depth estimates of DFD via diffu-
sion and standard DFD are both generally accurate for the
head and body. They however exhibit some false fine-scale
variations, perhaps due to DFD ambiguity in non-textured
regions. Our result conforms most closely to the actual ob-
ject, with shading information to provide shape details and
help resolve DFD uncertainties.

The last three examples contain albedo variations. For
the dress in the second row, our results exhibit a finer level
of detail than the others. The general depth trends shown
with SIRFS are accurate, but the albedo change and shape
details are missed. DFD via diffusion performs relatively
well on this example. Some detail is visible, but not as much
as what our method obtains through shading. Standard DFD
shows some shape detail as well, but also displays some
obvious errors, such as near the top-right corner.

For the turtle in the third row, the depth estimates of our
method show greater accuracy. The SIRFS method does a
fairly good job, but does not indicate the nearness of the

right leg. It also shows the shell and neck at the same depth,
and a smooth depth transition from the head to the shell.
DFD via diffusion does not exhibit the gradual changes of
depth over the object, while standard DFD displays incor-
rect depth variations in areas with little texture.

The final example, in the fourth row, is of a bunny fig-
urine. With SIRFS, the head and far arm are well recon-
structed. The depth of the closer arm, however, is off, and
the left foot is not shown to be closer. Both this result and
the one of DFD via diffusion exhibit less shape detail than
our depth estimate. Standard DFD displays some shape de-
tail, but has problems on the mostly textureless head.

5. Conclusion

In this paper, we presented a method to enhance depth-
from-defocus by incorporating shading constraints. To ef-
fectively utilize the shading information on objects with
varying albedo, we proposed an iterative technique that uses
DFD and shading estimation in manner in which they facil-
itate each other. Our experiments demonstrate that the use
of shading constraints brings greater accuracy and detail to
DFD, especially in areas without clear DFD solutions.
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In future work, we plan to investigate ways to increase
the accuracy of our depth estimates. Our current implemen-
tation assumes the incident illumination to be the same at all
surface points. However, this will not be the case due to dif-
ferent self-occlusions of an object towards different lighting
directions. This issue could be addressed by computing the
light visibility of each point from the estimated depth.
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