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Abstract

We propose a method for removing non-uniform motion
blur from multiple blurry images. Traditional methods fo-
cus on estimating a single motion blur kernel for the entire
image. In contrast, we aim to restore images blurred by un-
known, spatially varying motion blur kernels caused by dif-
ferent relative motions between the camera and the scene.
Our algorithm simultaneously estimates multiple motions,
motion blur kernels, and the associated image segments. We
formulate the problem as a regularized energy function and
solve it using an alternating optimization technique. Real-
world experiments demonstrate the effectiveness of the pro-
posed method.

1. Introduction
Motion blur caused by a relative motion between a cam-

era and a scene is inevitable due to the nature of a camera
sensor that accumulates incoming light over a certain period
of time. Many computer vision algorithms rely on the as-
sumption that a scene is captured without such motion blur.
However, this assumption generally does not hold unless the
scene and the camera are both static. It is therefore impor-
tant to correctly remove motion blur from images so that the
subsequent algorithms can neglect the effect of motion blur.

Motion deblurring has been studied by many re-
searchers. Most methods solve the problem under an as-
sumption that there is only a single motion blur kernel
for the entire image. However, in real-world cases, pho-
tographed images often have spatially-varying motion blurs
due to multiple relative motions caused by moving objects
or depth variations from the camera (Fig. 1).

This paper proposes an algorithm for removing spatially-
varying motion blurs from images. The removal of
spatially-varying motion blurs involves three different prob-
lems: estimation of motions, segmentation into regions of
homogeneous motions, and estimation of motion blur ker-
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Figure 1. Different motions are introduced to the foreground and
background objects due to a moving object (left) and a depth dif-
ference (right).

nels. Solutions of these problems affect to each other recip-
rocally. Therefore, we jointly solve these problems by an
energy minimization approach. Our algorithm uses a regu-
larized form of the energy function and minimizes it by an
alternating optimization technique. From two or more input
images, images are restored by removing spatially-varying
motion blurs.

The primary contributions of our work are twofold. First,
it proposes a new approach to restoring images that are
contaminated by spatially-varying motion blurs. Second,
in addition to the restoration, associated motion blur ker-
nels, segmentation, and motions are simultaneously ob-
tained. The proposed method has wider applicability com-
pared with the prior approaches that only assume a single
motion blur kernel.

1.1. Related work

The major difficulty of motion deblurring is accurate es-
timation of motion blur kernels, in other words, motion
point spread functions (PSFs). Most prior approaches ex-
tensively focus on a single motion PSF caused by a cam-
era, but not spatially-varying motion PSFs caused by mul-
tiple objects’ motions. Yitzhakey et al. propose a method
for motion deblurring by identifying the motion PSF using
an isotropic image assumption [2]. Assuming an 1D direc-
tional motion blur in their model, they extract the motion
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Figure 2. Overview of the proposed method. Given blurry images as input, the algorithm finds the initial guess for the multiple motion
estimation using Bhat et al.’s method [1]. In the estimation step, accurate motion estimation, segmentation, and motion PSF estimation are
performed. With these estimates, the restoration step deblurs input images with refinement of the motion PSF estimates.

component from the image in the frequency domain using
autocorrelation. Afterwards, they extend their method to ac-
count for a high frequency motion blur caused by vibration
that is observed along with the major 1D directional mo-
tion blur [3]. Recently, Jia proposes a deblurring method
that uses the translucency information of blurry regions be-
tween two opaque regions [4]. The information is acquired
by image matting and used to estimate a single motion PSF.

In the multiple image framework, Chen et al. propose a
method for recovering the original image from two consec-
utively blurred images [5]. The method adopts an energy
minimization technique that computes the best translation
of the camera from the two consecutive images. Similarly,
Rav-Acha and Peleg [6] use two blurry images (one is hor-
izontally and the other is vertically blurred) for deblurring
by simultaneously estimating parameters of image displace-
ments using iterative energy minimization. Bascle et al.
propose a method to remove motion blur and generate high-
resolution images from an image sequence by finding pix-
elwise motion [7]. Bar et al. developed a unified framework
of segmentation and blind restoration by treating the im-
age segmentation and restoration as a coupled problem [8].
While they use a classical color-based image segmentation
without using the motion blur kernel for the segmentation,
convincing results are obtained with the proposed method.
Yuan et al. use a blurred/noisy image pair to handle uniform
motion blur [9]. They also propose a novel deconvolution
method that reduces ringing artifacts.

Recently, a few works for removing spatially-variant mo-
tion blur have been proposed. Levin proposes a method to
restore a blurry image that contains one motion blurred ob-
ject and a sharp background [10]. The algorithm uses the
statistical distributions of image gradient to estimate mo-
tion blurs and to locate a blurry foreground object. Bards-
ley et al. use a phase diversity method to find motion PSFs

in which segmentation is performed by splitting an image
into regions that have homogeneous motion PSFs [11].

Apart from these post-processing approaches, a few
hardware approaches have been proposed as well. Ben-Ezra
and Nayar develop a hybrid imaging system [12] that con-
sists of two cameras: one is high-resolution with a long ex-
posure time, the other is low-resolution but can capture mul-
tiple frames with a shorter exposure time. Using the low-
resolution camera for estimating the camera motion, their
method estimates PSF for the high resolution camera. It is
known that hardware approaches can handle more general
camera motions than software approaches. However, such
hardware systems are still expensive, and unfortunately they
are not commonly available.

1.2. Overview

Our goal is to restore motion blurred images which con-
tain spatially-varying motion blurs. Figure 2 illustrates the
overview of our method.

Our algorithm takes multiple blurry images of roughly
the same scene as input, e.g., consecutive frames from a
video. To simplify the explanation, we describe our algo-
rithm in the case of two input images although the algorithm
can naturally work with more than two input images. Given
the input images, our method first finds an initial guess of
multiple different motions that appear in the images. For
this step, we use Bhat et al.’s motion fitting method [1].
Since the accurate motion estimation is performed in the
following step, the initial estimation result need not neces-
sarily be precise.

Once the initial estimation of motion parameters is ob-
tained, the first stage of the proposed method simultane-
ously refines the motion estimates, performs image segmen-
tation into regions of homogeneous motions, and estimates
the corresponding motion PSFs. The estimated PSFs are



further refined in the following restoration stage, where we
perform the refinement and image restoration at the same
time, using a method similar to Jin et al.’s work [13].

A few assumptions are used in the proposed method.
First, a piecewise affine motion is assumed between im-
age segments. Second, we assume that a motion PSF
is dominated by a linear component. These assumptions
are commonly used in many prior deblurring methods
(e.g., [2], [3], [6], [7]) and reasonably hold with image se-
quences captured by a video camera.

2. Formulation
Section 2.1 describes the motion blur model used in this

paper. Section 2.2 describes the algorithm of simultaneous
estimation for obtaining multiple relative motions, segmen-
tation, and motion PSFs. Section 2.3 explains the algorithm
for image restoration and motion PSFs refinement.

2.1. Motion blur model

Let I be an image that contains a motion blur and Is

be the corresponding sharp image in which the motion blur
does not exist. These two images I and Is are related by the
following equation

I(x) = kv ∗ Is(x) =
∫ ∞

−∞

1√
2π

e−t2/2Is(x + vt)dt, (1)

where v is a 2D motion vector corresponding to the relative
motion between a camera and the scene, and kv is a motion
blur kernel parameterized by the motion vector v.

Since an image is composed of a collection of discrete
pixels, Equation (1) can be expressed in a discrete form;

u = Kvus, (2)

in which the column vectors u and us embed pixels of the
image I and Is, respectively, and Kv is a matrix represen-
tation of convolution with the motion blur kernel kv.

In a captured image, multiple different motions and
spatially-varying motion blurs may exist. To represent n
different relative motions and motion blurs, we use the sub-
script i, such as vi and Kvi , where 0 ≤ i < n, to indicate
the i-th motion. We also introduce a segmentation mask
vector mi and its matrix representation Mi, which is a di-
agonal matrix whose diagonal elements are equivalent to
the elements of mi, to indicate the i-th image region that
corresponds to the i-th relative motion. In the vector mi,
we use floating-point numbers instead of binary numbers,
and all elements are set in the range [0, 1]. For example,
if mi[l] = 1, the l-th pixel belongs to the i-th motion. As
mi[l] decreases, the l-th pixel is less likely to belong to the
i-th motion. Using this notation, the motion blur caused by
the i-th motion can be described as

Miu = MiKvi
us. (3)

Assume that there are two sharp images us0 and us1 of
roughly the same scene. Image segments of these two im-
ages are associated by piecewise affine motions as

Mius0 = MiuAi
s1 , (4)

where uAi
s0 is the vectorized image us0 transformed by the

affine transform Ai, and Mi is a segmentation mask de-
fined in the coordinates of us0. When these image segments
are blurred by spatially-varying motion PSFs, Equation (4)
changes to

Miu0 = MiKv0i
us0, and

MiuAi
1 = MiKAi

v1i
uAi

s1 , (5)

where u0 and u1 are blurry images, and KAi
v1i

is a matrix
representation of convolution with the i-th blur kernel pa-
rameterized by a vector vAi

1i . v0i represents the i-th motion
blur parameter in image u0. Likewise, v1i denotes the i-th
motion blur parameter of image u1. In the following, we
use K0i and KAi

1i to denote Kv0i
and KAi

v1i
, respectively.

For a 2D motion vector v, vA indicates a vector warped by
a transform A without the translation component.

From Equations (4) and (5), we obtain

MiuAi
1 = MiKAi

1i us0. (6)

Because of occlusions or image boundaries, we may
have image areas that do not have corresponding regions
in the other image. For these image areas, segments cannot
be defined. We call such image areas occluded regions.

2.2. Estimation step

Since motion blurs are commutative, applying motion
PSFs K0i and KAi

1i to the i-th segments of uAi
1 and u0 re-

spectively will produce the same result, which can be writ-
ten as

MiKAi
1i u0 = MiKAi

1i K0ius

= MiK0iKAi
1i us = MiK0iuAi

1 , (7)

where us = us0. In the following, to simplify the notation,
we will use us to represent us0. From Equation (7), the
following equation is obtained;

∑
i

dT
i Midi = 0, (8)

where di = K0iuAi
1 − KAi

1i u0. Therefore, we expect that
minimizing the left term of Equation (8) yields the solutions
of K and A, if mask vectors mi are properly set. How-
ever, due to the non-linearity of the equation, the solution
that minimizes the term cannot be determined uniquely. To
assure the uniqueness of the optimal solution, we use addi-
tional constraints similar to Jin et al.’s method [13], which



penalize long motion blurs. For mask vectors mi, setting
all the elements to zero can produce a numerically opti-
mal result when minimizing the left term of Equation (8),
however, this approach should be avoided. In addition, it
is better to preserve edges in mask images while smooth
transition of mask values should be observed in blurry im-
age regions. Combining all these constraints, we design a
regularized form of the energy function as follows.

E (v,A,m) =
∑

i

dT
i Midi

︸ ︷︷ ︸
error term

(9)

+ α
∑

i

[vT
0iv0i + (vAi

1i )T (vAi
1i )]

︸ ︷︷ ︸
motion blur term

+ β(1 −
∑

i

mi)T (1 −
∑

i

mi)

︸ ︷︷ ︸
occlusion term

+ γ
∑

i

[(Dxmi)T G(Dxmi) + (Dymi)T G(Dymi)]

︸ ︷︷ ︸
edge term

,

where α, β, and γ are weighting factors.
In Equation (9), the error term computes the weighted

differences between two segments. This is the core term
in the energy function for estimating the multiple motions,
motion PSFs, and segmentation. The motion blur term
assures the uniqueness of the motion PSFs by penaliz-
ing excessively long motion blur vectors. The occlusion
term accounts for the occluded pixels that are measured
by (1 − ∑

i mi), in which 1 is a vector whose elements
are all one. The edge term makes mask estimates rapidly
change around edges, but slowly change in the smooth re-
gions. To evaluate transitions of mask values, spatial gra-
dients of mask values are computed. Dxmi and Dymi are
the spatial gradients, where Dx and Dy are matrix represen-
tations of convolution with vertical and horizontal gradient
kernels, i.e., [0 − 1 1] and [0 − 1 1]T . G is a diagonal
matrix whose elements are 1/(g2

j + δ), where gj is the gra-
dient magnitude of the j-th pixel of u0. δ is a small positive
constant used to prevent division by zero. The mask vectors
are constrained by

∑
i mij ≤ 1 ∧ mij ≥ 0 ∀j, where mij

is the j-th element of mi.
We optimize the energy function in Equation (9) using an

alternating optimization approach and gradient-based mini-
mization techniques. The implementation details about the
optimization are described in Section 3.

2.3. Restoration step

The estimated PSFs in the previous stage are relative
PSFs among images which are not necessarily optimal for
generating sharp images via deconvolution. We call the

PSFs that associate a sharp image with the blurry image the
optimal PSFs to distinguish from the relative PSFs.

As described by Jin et al. [13], the optimal PSFs and the
relative PSFs are related as

v̂0i =
√

b2 + 1v0i − bvAi
1i , and (10)

v̂Ai
1i = −bv0i +

√
b2 + 1vAi

1i , (11)

where b is an unknown scalar. From these relations, the
image u0 can be deblurred to yield a sharp image us, ex-
cept for the occluded regions, by minimizing the following
function:

Er1(us, b) =
∑

i

(dT
0iMid0i + dT

1iMid1i) + ρ(us), (12)

where d0i = u0 − K0i(b)us and d1i = uAi
1 − KAi

1i(b)us.

K0i(b) and KAi

1i(b) are matrices parameterized by motion

blur vectors v̂0i and v̂Ai
1i computed by Equations (10)

and (11). ρ(us) is a regularization function. We used a
regularization function introduced by Geman et al. [14],
ρ(us) = ζ

∑
j g2

j /(1 + g2
j ), where ζ is a weighting factor

for the regularization term. gj is the spatial gradient magni-
tude of the j-th pixel of us. ζ should be relatively small to
avoid strong bias to ρ(us).

In the proposed method, occluded regions need special
handling because no relative motions can be defined for
them. To handle occluded regions, we assume that such
regions have the most dominant motion in the image. This
assumption works for many images, e.g., where the most
dominant motion is observed in the background of the scene
by a camera motion. Using this assumption, we modify the
mask matrix M to assign new mask values in the occluded
regions. With the modified mask matrix Mo, the energy
function Er1 is slightly modified so that the occluded re-
gions are correctly handled;

Er2(us, b) =
∑

i

(dT
0iM

o
i d0i + dT

1iMid1i) + ρ(us). (13)

By minimizing Equation (13), the deblurred image us cor-
responding to u0 and optimal PSFs K are obtained.

3. Implementation
This section describes minimization methods for the en-

ergy functions in Equations (9) and (13).

3.1. Computation of estimation step

In the estimation step, motions A, image segments m,
and non-uniform motion PSFs K (which are parameterized
by v) are estimated using Equation (9). To jointly opti-
mize these parameters, we use an alternating optimization
approach for three sets of parameters [mi], [Ki] and [Ai].



One of these parameter sets is updated at one step, and
the others are updated in the following steps in sequence.
This iteration continues until the energy function converges.
We use a gradient-based unconstrained non-linear optimiza-
tion method, fminunc of Matlab optimization toolbox,
to optimize motion PSFs [Ki], and a gradient projection
method [15] to optimize segmentation masks [mi]. For
estimating motions [Ai], we use a registration method de-
scribed by Baker et al. [16].

Segmentation masks Segmentation masks mi are esti-
mated by optimizing the terms of Equation (9) except the
motion blur term. The gradient of mi is computed from
Equation (9) as

∂E′

∂mi
= dT

i di − 2β(1 −
∑

j

mj) (14)

+ 2γ[DT
x GDx + DT

y GDy]mi.

Motion PSFs Motion PSFs can be estimated by optimiz-
ing the error term and the motion blur term of Equation (9).
By computing gradients of motion blur parameters v0i and
vAi

1i in a similar way to Jin et al. [13], we can obtain

∂E

∂v0i
= 2

(
MiK̇0i∇uAi

1

)T

di + αv0i, and (15)

∂E

∂vAi
1i

= −2
(
MiK̇Ai

1i ∇u0

)T

di + αvAi
1i , (16)

where ∇u0 = [Dxu0 Dyu0] is a matrix consisting of two
column vectors of image gradients, and K̇v is a matrix rep-
resentation of convolution with a kernel k̇v defined as

k̇v ∗ I = −
∫ ∞

−∞

t√
2π

e−t2/2I(x + vt)dt. (17)

Motion parameters Motion parameters Ai can be com-
puted by optimizing the error term of Equation (9). To op-
timize the error term, K0iuAi

1 and KAi
1i u0 should be com-

puted at each iteration. However, if we assume that cur-
rent motion parameters Ai are close enough to the solution,
we can approximate the minimization by image registra-
tion between wAi

1 = K0iuAi
1 and w0 = KAi

1i u0. Con-
sequently, motion parameters can be computed by Lucas-
Kanade based registration method between w0 and wAi

1

with weighting factors Mi. For this computation, we
used a weighted inverse-compositional method described
by Baker et al. [16].

Hierarchical estimation For large images, estimation of
these parameters is computationally intensive, and obtain-
ing an optimal solution becomes difficult due to the number
of unknown parameters. To avoid this problem, we used a

pyramidal approach for the computation in a coarse-to-fine
manner. To assign initial values for the estimation in a finer
level, segmentation masks are enlarged by bilinear interpo-
lation. The estimated motion blur parameter at a pixel is
magnified twice and propagated to the corresponding four
pixels at the next level of the pyramid. Likewise, the esti-
mated motion parameters are propagated to the next level
of the pyramid with the translation parameters multiplied
by two.

3.2. Computation of restoration step

The image restoration and PSF refinement are also per-
formed by a gradient-based optimization. We use a gra-
dient projection method to force pixel values of us to be
within the valid range, and an unconstrained gradient de-
scent method to optimize the parameter b of Equation (13).
We describe the details of optimizing Equation (13) for ob-
taining the deblurred image us and optimal PSFs.

Image deblurring From Equation (13), the gradient of
the deblurred image us can be written as

∂E′
r2

∂us
= −2KT

0i(b)M
o
i d0i

− 2
(
KAi

1i(b)

)T
Mid1i +

dρ(us)
dus

. (18)

Motion PSFs To obtain the optimal PSFs, the gradient of
parameter b in Equation (13) can be computed as

∂E′
r2

∂b
= −2dT

0iM
o
i (K̇0i(b)∇us)(qv0i − vAi

1i )

− 2dT
1iMi(K̇Ai

1i(b)∇us)(qvAi
1i − v0i), (19)

where q = b/
√

b2 + 1.

4. Experiments
To evaluate the proposed algorithm, we used both syn-

thetic and real-world images. The input images are first
converted into grayscale images to perform the estimation
step. Once the parameters are obtained, the restoration step
is performed for each color band to produce the final result.
Throughout our experiments, we set parameters in Equa-
tion (9) as (α, β, γ, δ) = (10−2, 10−3, 2.0 × 10−5, 10−4),
and the weighting factor of ρ in Equation (13) as ζ = 10−5.
The image intensity is normalized in the range [0, 1].

We ran our algorithm over five synthetically-blurred im-
ages. Root mean squared errors (RMSE) from the ground
truth (original sharp image) were measured in normalized
intensity (Fig. 3). From left to right for each dataset, the
first column shows RMSE of the blurry image, and the sec-
ond and third columns show RMSEs computed from the re-
stored images using the foreground PSF and the background
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Figure 3. Comparison of RMSEs from the ground truth using syn-
thetic datasets that contain background and foreground motion
PSFs. From left to right bars in each dataset, RMSE of the in-
put blurry image, the deblurred image using the background PSF,
the deblurred image using the foreground PSF, and our result are
shown.

PSF respectively. The right-most column shows the RMSE
of our result. Images restored by only foreground PSFs
show errors even larger than that of blurred images. Also,
the images restored only by background PSFs show slightly
larger errors than our results. This is because the area of
the background region is usually large enough to make the
RMSE numerically small. However, perceptual differences
are large due to the large error in the foreground region. In
these experiments, all the image sizes are 640× 480 pixels.
The average computation time is about six minutes for the
estimation step and 40 seconds for the restoration step.

Four different real-world scenes that contain spatially-
varying motion blurs were deblurred by our method (Fig. 4).
The first and second rows show the blurry input images.
The third and fourth rows show the segmentation masks that
correspond to the background and foreground, respectively.
Brighter pixels indicate the higher confidence in being the
part of background/foreground. Pixels that do not belong to
either the foreground or the background are estimated to be
in the occluded regions. In the fifth row, estimated PSFs are
shown in a tabular form, e.g., 1-A corresponds to the PSF of
Input 1, segment A (background). The following two rows
show the deblurred results restored from input 1 and 2. For
the deblurring, the estimated non-uniform PSFs are used for
the corresponding image regions. For better visualization,
the bottom row shows magnified image portions.

Input images containing three different motions were
tested to show that our method is able to handle more than
two different motions (Fig. 5). These three motions cor-
respond to the background, a pencil vase, and a cigarette
pack, respectively, resulting from depth differences among
them. The cigarette pack is the nearest object to the camera,
and the pencil vase lies between the cigarette pack and the
background. Our method successfully segments the scene,
estimates the motion PSFs, and deblurs the input images.

The bottom row of the figure shows the magnified views of
the image portions for a better comparison.

Figure 6 depicts the power of handling spatially-varying
motion PSFs. The foreground object is blurred by its own
motion while background is also blurred by a camera mo-
tion. The image deblurred only with the background PSF
shows severe artifacts on the foreground object due to the
inconsistency with the foreground PSF (Fig. 6b). On the
other hand, the image deblurred only with the foreground
PSF yields a blurry background (Fig. 6c). Our method is
able to avoid this problem because it uses non-uniform mo-
tion PSFs for image restoration (Fig. 6d).

5. Discussion

In this paper, we proposed a new method for remov-
ing non-uniform motion blurs from images. To achieve
this goal, the problem is formulated as simultaneous esti-
mation of multiple motions, segmentation, and spatially-
varying motion PSFs. The problem is solved by optimiz-
ing a regularized form of the energy function. Furthermore,
the estimated PSFs are refined to achieve the restoration of
images. We have evaluated the proposed method using a
variety of synthetic and real-world images and validated the
effectiveness of the algorithm.

Although we used only two images as input, the algo-
rithm can naturally take more than two images as well. In
this case, the estimation step is performed for each pair of
images, and the restoration step is performed by simultane-
ously optimizing the energy functions of all pairs of images.

Limitations Our algorithm has a few limitations. One is
that it shows some artifacts around the boundaries of differ-
ent motions in restored images. Blurry regions on bound-
aries of the foreground object still remain (Fig. 6). This
artifact is inevitable due to missing information of hidden
pixels behind the foreground objects. Second, like exist-
ing segmentation algorithms, our segmentation is not per-
formed well on textureless regions because it is difficult to
determine the motion in such regions. Therefore, the pro-
posed method works better if the input images are more tex-
tured.
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