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Abstract

We propose a method for estimating demosaicing algo-
rithms from image noise variance. We show that the noise
variance in interpolated pixels becomes smaller than that of
directly observed pixels without interpolation. Our method
capitalizes on the spatial variation of image noise variance
in demosaiced images to estimate the color filter array pat-
terns and demosaicing algorithms. We verify the effective-
ness of the proposed method using various images demo-
saiced with different demosaicing algorithms extensively.

1. Introduction

Many consumer digital cameras are equipped with a
square grid of photo-sensors overlaid with a color filter ar-
ray (CFA). The color filters selectively allow light according
to wavelength range to produce color information. Some
digital cameras employ three separate sensors, each sensor
taking a separate measurement of red, green, and blue by
splitting light through a prism assembly. In single-sensor
cameras, almost all of them use a Bayer filter on which each
two-by-two submosaic contains two green, one blue, and
one red filters. The raw image data captured by a sensor
with a CFA is converted to a color image by a demosaicing
algorithm. This process is illustrated in Figure 1 from right
to left.

Precise understanding of imaging process is important
for many computer vision algorithms that require accurate
knowledge of irradiance. For the task of photometric cal-
ibration, there has been plenty of studies on estimation of
camera response functions, vignetting, etc. Knowledge of
the CFA pattern and the demosaicing algorithm is important

Figure 1. A color image (left) and the corresponding raw im-
age (right). A demosaicing algorithm produces a color image from
a raw image. Our method can invert the process of demosaicing.

as well to understand true irradiance; however, not many
studies have been done in this direction. Since informa-
tion on the CFA pattern and the demosaicing algorithm are
typically not available from camera manufacturers, devel-
opment of an estimation algorithm is important.

In this paper, we develop a method for automatically de-
termining CFA patterns and demosaicing algorithms. We
refer to a CFA pattern to indicate the arrangement of the
submosaic color filter pattern at a particular location on the
sensor. We use a physical property of the image noise vari-
ance, i.e., it becomes smaller after interpolation, to deter-
mine the interpolated pixels. After CFA estimation, our
method further estimates the demosaicing algorithm using
the distribution of interpolation weights. The overview of
the proposed method is illustrated in Figure 2.

This paper has two major contributions. First, we show
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Figure 2. Overview of the proposed method. Our method takes registered color images or a single color image as input. Our method
consists of three stages: 1) detection of the demosaicing trace, 2) estimation of the CFA pattern, and 3) estimation of the demosaicing
algorithm.

how the image noise variance is skewed by the demosaicing
process; the noise variance of interpolated pixels becomes
smaller than that of the directly observed pixels. Second,
we develop a method to automatically identify CFA patterns
and demosaicing algorithms from the distribution of noise
variances.

2. Prior work
Demosaicing aims to produce high-quality color images

while avoiding the introduction of false color artifacts (e.g.,
chromatic aliases, zippering, etc.) at low computational
cost. There have been many studies on demosaicing algo-
rithms. A recent survey by Liu et al. covers a wide variety
of state-of-the-art demosaicing algorithms [12].

Recent demosaicing algorithms are far more complex
than straightforward interpolation methods such as nearest-
neighbor/bilinear interpolation methods. Since the Bayer
pattern has more green pixels than either red or blue pixels,
many demosaicing algorithms first interpolate the green col-
ors for better edge preservation, and later resample the red
and the blue colors. For edge preservation, Chang et al. [2]
proposed to interpolate pixel values based on the magnitude
of the image gradient. Hirakawa and Parks [7] selected the
best value among the pre-computed candidates based on the
criterion of image naturalness. Tsai and Song proposed an
efficient selection method that avoids heavy computation of
the candidate colors [20].

Estimation of the demosaicing algorithms has been
studied in the context of digital forensics. Popescu and
Farid [15, 16] used the EM algorithm for identifying a de-
mosaicing algorithm. Bayram et al. proposed a method for
classifying digital camera models from information about
camera-specific interpolation [1]. Gallagher proposed a
method for detecting linear or cubic interpolation using
the periodicity of the second order derivatives of the in-
terpolated images [5]. Gallagher and Chen presented a
method for distinguishing natural images from photo realis-
tic computer-graphics images using demosaicing traces [6].

Our work is also related to image noise analysis in
physics-based computer vision. Image noise has been ac-
tively used for vision algorithms in previous approaches.
For example, Liu et al. [11] developed a method for esti-
mating noise level function from a single image and used
it for efficient image denoising. Matsushita and Lin [13]
used image noise for defining accurate intensity similarity
measure. Hwang et al. [9] proposed a noise-robust edge
detection algorithm based on noise observations. Treibitz
and Schechner [19] theoretically proved the recovery limits
in point-wise degradation considering intensity-dependent
image noise effects.

In another stream of image noise analysis in computer
vision, there are methods that perform estimation only from
noise observations. Matsushita and Lin [14], and Taka-
matsu et al. [17, 18] have shown that image noise provides
sufficient information for estimating radiometric response
functions. Like their methods that use the image noise as
signal, our method estimates the trace of the demosaicing
and the CFA pattern only from noise observations.

3. Demosaicing and image noise
This section describes the relationship between image

noise variance and color interpolation in a demosaicing pro-
cess. Specifically, we show that the noise variance of inter-
polated pixels tends to become smaller than that of the di-
rectly observed pixels. In the following, we call the directly
observed pixel value as observed intensity to differentiate it
from interpolated intensity.

In the demosaicing process, the intensity II(p) of an in-
terpolated pixel p is obtained by combining the observed
intensities IO(q) of the neighboring pixels q for each color
channel. This process can be formulated as Eq. (1), where
Rp represents the set of the observed pixels that are located
near pixel p.

II(p) =
∑

q∈Rp

w(q;p)IO(q). (1)



Figure 3. Visualization of image noise variances of the G-channel
(right) computed from registered images (left). Variances of pixels
whose values are obtained by interpolation tend to be smaller. The
visible checker pattern corresponds to the Bayer pattern.

Note that subscripts I and O denote interpolated and ob-
served pixels, respectively.

Let us now consider how image noise variance is altered
through the demosaicing process. Here we assume that the
observed image noise is spatially independent. An inten-
sity I(p) in a demosaiced image can be described by the
noise-free intensity Ĩ(p) and the image noise N(p) as

I(p) = Ĩ(p) + N(p). (2)

Substituting Eq. (2) into Eq. (1), we obtain

NI(p) =
∑

q∈Rp

w(q;p)NO(q), (3)

because ĨI is canceled out by the weighted sum of ĨO in
Eq. (3). From Eq. (3), the image noise variance can be de-
scribed as

σ2
I (p) =

∑
q,r∈Rp

w(q;p)w(r;p)cov(NO(q), NO(r))

=
∑

q∈Rp

w(q;p)2σ2
O(q), (4)

where σ2
I (p) and σ2

O(q) represent the variances of NI(p)
and NO(q), respectively. And cov(NO(q), NO(r)) repre-
sents the covariance between NO(q) and NO(r). Because
of the spatial independence of the noise distributions,

cov(NO(q), NO(r)) = 0, q 6= r.

Let us take a simple example to illustrate. Consider the
case of bilinear interpolation, w(q;p) = 1/n for all q
where n is the number of elements in the set Rp. Substi-
tuting w(q;p) = 1/n into Eq. (4), we obtain

σ2
I (p) =

1
n

σ̄2
O(p),

where σ̄2
O(p) is the average variance of the neighboring ob-

served pixels Rp. From this result, it is naturally expected
that the variance at the interpolated pixel becomes smaller.
Figure 3 shows the visualization of image noise variance of
the G-channel that is computed from registered color im-
ages. In the figure, a checker-board pattern can be clearly
seen, which corresponds to the Bayer pattern.

We use the decreasing tendency of the noise variance of
the interpolated pixels to determine the CFA pattern. Also,
this tendency weakens when either 1) weights of interpola-
tion, or 2) the noise variance distribution in the neighboring
observed pixels are very biased. However, these two condi-
tions seldom occur in practice.

4. Estimation method

Our estimation method consists of the following steps:
1) detection of the demosaicing trace, 2) estimation of the
CFA pattern, and 3) estimation of the demosaicing algo-
rithm. To obtain image noise variance, multiple registered
images with fixed camera parameters and view position are
usually used. The image noise variance is obtained from
the fluctuated values at the corresponding pixels across the
images. While a large number of images is preferred sta-
tistically, our method fortunately works well with just the
rough estimates of the variance. Therefore, it only requires
a few images (five images in this paper). In this section, we
will describe the algorithms of the above steps. We assume
that the possible candidates for CFA patterns are known in
advance because the types of CFA patterns (e.g. Bayer fil-
ters) are limited in practice.

4.1. Detection of the demosaicing trace

Consider a 1D sequence of noise variances where the
variances of the interpolated and the observed pixels al-
ternately appear. Applying the discrete Fourier transform
(DFT) to the sequence, the DFT magnitude is maximized
when the frequency ω equals to π, because the interpolated
and the observed variances appear by turns. This DFT prop-
erty is also used by Gallagher and Chen [6], but we use
noise variance as input instead of the derivatives of the color
images. Given a hypothesized CFA pattern, our method
assigns labels (interpolated or observed) to pixels. Then,
we apply DFT as mentioned above and evaluate the mag-
nitude. When the hypothesized CFA pattern is correct, the
DFT magnitude becomes large. We test for every possible
hypothesis.

To construct the 1D sequence of variances, we take the
average of the variances in the interpolated pixels along the
diagonal path of submosaics. The same procedure is per-
formed on the observed pixels. Using many diagonal paths,
we obtain a set of average variances of the interpolated and
the observed pixels. Finally, a long 1D sequence of vari-



ances is obtained by arranging them. The reason why we
sample variances diagonally is to avoid JPEG compression
artifacts. Since JPEG compression is applied to each 8 × 8
pixel block, horizontal or vertical arrangement generates
other peak frequencies [5].

By applying DFT to the 1D sequence {xk}, the Fourier
series {fj} in the frequency domain is obtained as

fj =
m−1∑
k=0

xke−
2πi
m jk (j = 0, · · · ,m − 1), (5)

where m is the length of the sequence. Similar to the
method of [6], we define the criterion C1 for determining
whether there exists a trace of demosaicing as

C1 =
|fmid|
|fm/2|

, (6)

where fm/2 is the m/2-th element of the Fourier series. Its
norm |fm/2| is the amplitude of (m/2)-Hz wave, and fmid

is the element whose amplitude is the median of all the am-
plitudes {|fj |}.

This value C1 becomes smaller if the hypothesized CFA
pattern is plausible. If the criterion C1 is larger than a prede-
fined threshold τ for all possible CFA patterns, we consider
that as the absence of demosaicing trace.

4.2. Estimation of the CFA pattern

The method described in Section 4.1 is effective for find-
ing CFA patterns as well as trace of demosaicing. However,
periodicity can be observed even when an incorrect CFA
pattern is assumed. To solve this problem, we use an addi-
tional criterion for estimating the CFA pattern.

We define a simple criterion C2 for the estimation that
assesses the plausibility of the hypothesized CFA pattern as

C2 =
σ̄2

O

σ̄2
I

, (7)

where σ̄2
I and σ̄2

O are the average variances of all the inter-
polated pixels and that of observed pixels, respectively. The
larger C2 is, the more likely the hypothesized CFA pattern
is. This criterion C2 can be computed in each color chan-
nel. We use all color channels to make the criterion robust
by summing them up as

C3 = CR
2 + CG

2 + CB
2 , (8)

where CR
2 , CB

2 , and CG
2 are the C2 criteria in the RGB

channels.
One weakness of this criterion C3 is that it is more sen-

sitive to JPEG compression artifacts than the criterion C1.
JPEG compression contaminates the pixel values regardless
of observed and interpolated pixels. As a result, the differ-
ence between the maximum and the second maximum of

the criterion C1 becomes small as JPEG compression ratio
becomes high. Therefore, if the difference in C1 is larger
than a predefined threshold (we used 0.5 in this paper), we
consider JPEG compression ratio to be low enough and use
C3 criterion. Otherwise, we use C1 criterion.

4.3. Estimation of the demosaicing algorithm

To estimate the demosaicing algorithm, we use the his-
togram of the interpolation weights w(q;p). Representing
Eq. (1) in a vector form, we obtain

IT
Ow = II(p) (9)

at each interpolated pixel p. We use notation Rp to rep-
resent the set of pixels that are used for the interpolation
(Rp

def= {q1, . . . ,qn}), where n is the number of the
neighboring observed pixels. The observed pixel intensi-
ties IO and interpolation weights w are represented in a
vector form as IT

O = (IO(q1), . . . , IO(qn))T and wT =
(w(q1;p), . . . , w(qn;p))T. We can obtain many samples
for Eq. (9) from many locations in the image coordinates.
For each p, we can create a set of equations of Eq. (9) using
multiple registered images. With conditions∑

q∈Rp

w(q;p) = 1, and

∀p,q, 0 ≤ w(q;p)(≤ 1), (10)

we estimate the interpolation weights w by solving the lin-
ear system of equations in a least-squares manner.

We use Fisher’s linear discriminant (FLD) [4] and
nearest-neighbor search for the classification of the demo-
saicing algorithms. Given the input feature, the classifier
finds the nearest class in the FLD subspace.

To generate the training dataset, we first calculate inter-
polation weight vectors w from images demosaiced by a
certain demosaicing algorithm. Then, the weight vector w
is computed at every interpolated pixel location. Depending
on the pixel location, the length of weight vectors w varies.
Next, we create a histogram of the weight vectors w for
each length of the weight vectors. Finally, these histograms
are normalized and concatenated to obtain a single vector
form of the training data. The same procedure is applied for
creating other training data representing a different demo-
saicing algorithm.

Note that the order of elements in the weight vector does
not have much meaning from the view point of the inter-
polation method. For example, the weight vector (0.4, 0.6)
is regarded to be the same as the weight vector (0.6, 0.4).
Therefore, we just sort the vector elements in ascending or-
der.
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Figure 4. Bayer pattern and possible two-by-two submosaic pat-
terns.

4.4. Estimation from a single image

The accurate estimation of image noise variance requires
multiple registered images of the same scene. It is often too
demanding, because such a dataset is not available in prac-
tice. To relax the condition, we assume that the irradiance
of the neighboring pixels is similar, and that variance can
be computed using the group of neighboring pixels. A sim-
ilar assumption was also used in previous work (e.g., [17]),
although in a different context. Since the characteristics of
noise variances in interpolated and observed pixels are dif-
ferent, we create the pixel groups by using only the same
class of pixels (either interpolated or observed).

In the single-image case, when the number of observed
pixels which are used for interpolation, i.e., elements in the
set RP, is more than three, the available constraints are
insufficient to uniquely determine interpolation weights w
at pixel p. This is because we only have two constraints,
Eqs. (9) and (10). In the multiple-image case, this does not
become a problem since we can create more equations from
multiple registered images. To resolve this ill-posedness in
the single-image case, we use an additional condition to reg-
ulate the solution. To avoid excessive deviation, we define
the condition that the sum of squared weights is minimized:
minwTw.

5. Experiments

In this section, we evaluate the proposed method in two
scenarios: the multiple-image case and the single-image
case. We also assess the robustness of the algorithm against
JPEG compression.

5.1. Multiple-image case

Setup In this experiment, we assume four local types of
the Bayer pattern as candidate CFA pattern as shown in Fig-
ure 4, like most of the demosaicing algorithms [12]. We
use the neighbor set Rp, which consists of four neighbor-
ing pixels in the G-channel and two or four pixels in R/B-

: observed pixel

G-channel R- & B-channels

: interpolated pixel : neighborhoods

Figure 5. Definition of neighborhoods in interpolation. The circle
indicates the interpolated pixel and the gray block indicates the
observed pixel. The arrow shows the neighbor relationship.
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Figure 6. Construction of non-interpolated images by down-
sampling using only the observed pixels.

channels for each p (see Figure 5). The threshold τ is em-
pirically set to τ = 0.1 throughout the experiment.

To prepare the ground truth dataset, we captured five
registered RAW images for each of 18 different scenes
(four scenes taken by EOS kiss digital original version,
seven scenes by EOS kiss digital N, seven scenes by EOS
20D). The captured RAW images are converted to color im-
ages by six different demosaicing algorithms implemented
in dcraw [3] and RAW THERAPEE [8]. These are bi-
linear, variable number of gradients (VNG) [2], patterned
pixel grouping (PPG) [10], and adaptive homogeneity-
directed (AHD) [7] algorithms implemented in dcraw,
and Horváth’s AHD (EAHD) and Heterogeneity-Projection
Hard-Decision (HPHD) [20] algorithms of RAW THERA-
PEE.

We also created color images without demosaicing inter-
polation by directly down-sampling RAW images as shown
in Figure 6. In down-sampling, every 2×2 submosaic of the
RAW image produces only one color pixel. We include this
as one of the demosaicing algorithm. In the following, this
data is referred to as non-interpolated, since demosaicing
algorithms generally use some interpolation. Therefore we
have seven demosaicing algorithms in total. After demo-
saicing, we applied JPEG compression to the demosaiced
images for assessing the robustness against JPEG compres-
sion. Figure 7 shows example of the images used for the



Figure 7. Example of images used for the experiment.

experiment. We use the half of all the images as a training
set, and the other half as a testing set.

When creating histograms of the weight vectors w, we
set the size of the histogram bin to be one tenth of 1/n
where n is the number of observed neighbors for interpo-
lation, because each element in w spans in the range of
[0, 1/n]. Using FLD, the histograms of w were projected
into a compact 4-D subspace.

Demosaicing trace The first row in Table 1 shows the
accuracy of the detection of the demosaicing trace by the
proposed method. The accuracy is evaluated with different
JPEG compression qualities. True positive indicates the rate
of the correct answer for demosaiced inputs. On the other
hand, True negative is the rate of the correct answer for non-
interpolated inputs. When JPEG quality is greater than 90,
the accuracy of the proposed method is also high (over 95-
percent). Because JPEG compression tends to uniformly in-
crease noise variance in the entire image, the periodicity of
noise variances used for detection is relatively maintained.
For this reason, performance degradation of the proposed
method against JPEG compression is not significant.

CFA pattern The second row in Table 1 shows the esti-
mation accuracy of CFA patterns against JPEG compres-
sion. Note that we did not use the image set of which
the demosaicing trace could not be detected. As described
above, JPEG compression contaminates the pixel values re-
gardless of observed and interpolated pixels, and therefore
it smooths out the difference between the observed and the
interpolated pixels. As a result, the information of CFA pat-
tern is buried as the compression ratio becomes higher.

Once the CFA pattern is estimated, we can produce an
irradiance image before demosaicing within an 8-bit accu-
racy. Figure 4 shows an example of reversing the demosaic-
ing process. The Bayer pattern image (right) is computed
from the input image (left) using our method.
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Figure 8. Plots of vectors which represent histogram of interpola-
tion weight, in the feature space. They are visualized by projection
onto the 2-D plane using Fisher’s linear discriminant analysis [4].
Different demosaicing algorithms form distinct clusters in the fea-
tures.

Demosaicing algorithm The third column in Table 1
shows the estimation accuracy of the demosaicing algo-
rithm against JPEG compression. Our method performs ac-
curately when the compression ratio is low. However, it is
affected by the JPEG quality; accuracy decreases with loss
of quality. This is due to the fact that the compression con-
taminates the pixel values randomly, which makes it diffi-
cult to robustly estimate the interpolation weights.

Figure 8 shows the 2-D plots of all the image sets in the
FLD space. Since the bilinear interpolation is very distinct
from other demosaicing algorithms, the FLD’s first projec-
tion separates the bilinear interpolation compared to oth-
ers. The other distributions also show clear distinction from
each other in the higher-order projection.

5.2. Single image case

For the single-image case, we used 32 images for the
experiment. The right-hand side of Table 1 shows the accu-
racy of all the steps in the single-image case. The robust-
ness against JPEG compression is very similar to that of the
multiple-image case.



Table 1. Quantitative evaluation of our method in the multiple-image case and single-image case. From top to bottom, results of 1) detection
of the demosaicing trace, 2) estimation of the CFA pattern, and 3) estimation of the demosaicing algorithm are shown. From left to right,
the accuracy is evaluated with various JPEG qualities (100 indicates no compression).

Multiple images Single image
JPEG quality 100 98 95 90 100 98 95 90

Demosaicing trace True positive [%] 100 100 99.1 96.3 100 100 94.8 90.1
True negative [%] 100 100 100 100 100 100 96.9 75.0

CFA pattern Accuracy [%] 95.8 92.6 73.1 63.0 98.4 94.3 89.6 83.3
Demosaicing algorithm Accuracy [%] 89.8 78.5 70.5 53.8 96.2 94.0 88.9 75.8

Table 2. Accuracy of the estimation of demosaicing algorithms.
Comparison between the proposed method and Popescu and
Farid’s method [16] are shown.

JPEG quality
100 98 95 90

The proposed method 94.6 88.6 79.6 63.1
Popescu and Farid 91.5 73.4 69.3 64.1

5.3. Comparison

We compare our method with previous approaches. In
this comparison, we use the same dataset used for the
single-image case (Section 5.2).

Detection of demosaicing trace We compared the pro-
posed method with Gallagher and Chen’s method [6]. Fig-
ure 9 shows ROC curves of the two methods in the cases
where JPEG quality is 70 and 90. This result shows the
proposed method is slightly superior to the method [6], even
though our method only uses noise information.

Estimation of demosaicing algorithm We compared the
proposed method with Popescu and Farid’s method [16].
Popescu and Farid’s method assumes that the input to their
algorithm is a demosaiced image but does not perform the
detection of demosaicing trace. Therefore, we used only
demosaiced images as input to these two methods. Because
their method estimates the algorithm without the knowledge
of the CFA pattern, we regarded the failure of estimating
CFA patterns as the failure of estimating the demosaicing
algorithm in our method, i.e., the recognition accuracy is
computed as the product of the accuracy of the CFA pattern
recognition and the accuracy of the demosaicing algorithm
recognition.

Table 2 shows the result with various degrees of JPEG
compression. Our method performs well when the JPEG
compression artifact is not significant. As the compres-
sion artifact becomes stronger, the accuracy of both meth-
ods goes down.
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Figure 9. Detection rate of demosaicing traces. ROC curves of the
proposed method and Gallagher and Chen’s method [6] are shown
for the cases of JPEG quality 70 and 90.



6. Discussions
In this paper, we showed the relationship between im-

age noise variance and demosaicing. We have developed an
algorithm for estimating CFA patterns and demosaicing al-
gorithms. Extensive quantitative evaluation was performed
to verify the effectiveness of the proposed method. Nev-
ertheless, our method has some limitations, and there are
several avenues for future work.

One limitation of our method is that the accuracy goes
down when the image is processed after demosaicing, e.g.,
image compression and other image filtering. These image
processing operations significantly alter the noise distribu-
tion in unpredictable manner. It is very likely that explicitly
accounting for these factors can increase the applicability
of the proposed method. We are investigating the possi-
bility of deciphering such post-processing operations using
the observation of image noise. Another direction for future
work is to apply the proposed method as a pre-processing
stage for various vision tasks. Because interpolated pixels
are essentially synthetically produced pixels, identifying the
pixels that really receive irradiance (not by interpolation) is
important for physics-based vision methods.
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