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Abstract

This paper describes a photometric stereo method that
works with a wide range of surface reflectances. Unlike pre-
vious approaches that assume simple parametric models such
as Lambertian reflectance, the only assumption that we make
is that the reflectance has three properties; monotonicity, visi-
bility, and isotropy with respect to the cosine of light direction
and surface orientation. In fact, these properties are observed
in many non-Lambertian diffuse reflectances. We also show
that the monotonicity and isotropy properties hold specular
lobes with respect to the cosine of the surface orientation and
the bisector between the light direction and view direction.
Each of these three properties independently gives a possible
solution space of the surface orientation. By taking the in-
tersection of the solution spaces, our method determines the
surface orientation in a consensus manner. Our method natu-
rally avoids the need for radiometrically calibrating cameras
because the radiometric response function preserves these
three properties. The effectiveness of the proposed method is
demonstrated using various simulated and real-world scenes
that contain a variety of diffuse and specular surfaces.

1 Introduction

Photometric stereo estimates surface orientation from a set
of images taken from a fixed viewpoint under different light-
ing directions. After the early work of Woodham [24] and
Silver [19], many researchers have studied the approach to
make it work under more generalized conditions. Many pho-
tometric stereo methods are built upon specific parametric
reflectance models, and are therefore naturally restricted to
limited classes of reflectances. One of the most important di-
rections for making photometric stereo practical is to handle
various surface reflectances.

In this work, we present a new approach for solving the
photometric stereo problem for handling a wide range of sur-
face reflectances. Instead of assuming a specific parametric
reflectance model, such as Lambertian, we assume only three
reflectance properties that are often observed in real-world
scenes: monotonicity, visibility, and isotropy of reflectance
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with respect to the cosine of surface normal and light direc-
tion. In fact, these properties are observed in many common
materials such as plastics, ceramics, rubber, opaque glasses,
and smooth glossy paints.

Our method uses about fifty images of a static scene com-
posed of spatially varying reflectances, taken from a fixed
viewpoint under varying and known directional lightings.
From the intensity observations per pixel, we establish a set
of inequalities derived from the monotonicity, visibility, and
isotropy properties. These inequalities specify convex cones
in the solution space of surface orientations. By taking the in-
tersection of the convex cones, our method obtains a smaller
solution space for the surface orientation. To efficiently esti-
mate surface orientation, we estimate the orientation using an
energy minimization.

Our consensus approach avoids imposing strict assump-
tions on surface reflectances and expands the applicability of
photometric stereo. We show that the method can also deal
with surfaces with only specular reflections using the same
scheme by assuming the monotonicity and isotropy proper-
ties with respect to the cosine of surface normal and the bi-
sector between the lighting direction and viewing direction.
In addition, our method is naturally free from radiometric cal-
ibration. Because radiometric response functions are mono-
tonic, the monotonicity, visibility, and isotropy properties are
maintained in the observation with any non-linear radiometric
response functions. This allows our method to work without
knowing the camera response function.

1.1 Previous work

Photometric stereo has a long history. Early methods made
strong assumptions on the surface reflectance, often the Lam-
bertian model. There have been many studies to weaken the
constraints on the reflectance model.

Coleman and Jain [7] use four images to detect high-
lights. Barsky and Petrou [3] extend the method to han-
dle highlights as well as shadows by using four color im-
ages. These methods treat non-Lambertian effects as out-
liers. Solomon and Ikeuchi [21] recover surface roughness
using the similar four-light setup. Provided there are enough
images, non-Lambertian reflectance parameters can be esti-
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Figure 1. Measured reflectance of a diffuse yellow sphere painted
with a poster color containing gum Arabic (blue line) and Lamber-
tian fitting (red line).

mated with their method. Nayer et al. [15] apply photometric
stereo using a hybrid reflectance model that is a linear com-
bination of Lambertian and specular components. Tagare and
de Figueiredo [22] consider diffuse non-Lambertian surfaces
and solve the problem using an m-lobed reflectance map.
Georghiades [8] considers both diffuse and specular reflec-
tions and estimates surface normals as well as reflectance
parameters based on the Torrance-Sparrow model with un-
known light directions.

Some early works [12, 13] use a reference object for pho-
tometric stereo. Recently, Hertzmann and Seitz [10] proposed
an example-based surface reconstruction method with arbi-
trary BRDFs. Goldman et al. [9] consider object surfaces
modeled by a linear combination of two fundamental mate-
rials and remove the need for a reference object by iteratively
estimating the basis BRDFs and surface normals. There are
other approaches for the generalization of reflectance prop-
erties that are based on monotonicity [20], isotropy [14],
Helmbholtz stereopsis [25], bilateral symmetry [1, 2], and re-
flective symmetry of the halfway vector [11].

There have been some diffuse reflection models for dielec-
tric materials. Reichman [18] derives diffuse reflection and
transmission from the media of arbitrary optical thickness.
Wolff et al. [23] provide an azimuth-independent diffuse re-
flection model with accounting isotropic subsurface scatter-
ing and Fresnel boundary effects. Oren and Nayar [17] pro-
pose a generalized diffuse reflectance model by taking sur-
face roughness into account. Once the surface roughness is
known, it is reported that it works well for estimating surface
orientations. However, in practice, it is difficult to know the
surface roughness beforehand. While our model theoretically
does not entirely cover the Oren-Nayer model because of for-
ward and backward scattering effects, as shown later in our
experimental results, our method is still able to handle rough
surfaces such as the one shown in Fig. 1.

Our approach is close to Chen et al.’s work [6] in that both
methods do not use a specific parametric reflectance model.
Their method determines surface orientations by taking the
bisector of view and lighting directions using specular high-
light. Unlike Chen et al.’s approach, our method can handle
diffuse surfaces as well as specular surfaces using monotonic-
ity, visibility, and isotropy properties.
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Figure 2. Monotonicity, visibility, and isotropy properties of re-
flectances. Left: the reflectance » monotonically increases with n - [.
Middle: the reflectance becomes zero when n - I < 0. Right: the
reflectance r gives the same value whenn - I; = n - [;.

The rest of this paper is as follows. We first describe the
key ideas of the proposed method in Section 2. We formu-
late the solution method in Section 3 and present results in
Section 4 followed by discussions and conclusions.

2 Proposed approach

Let us begin with our image formation model. An intensity
observation o; is described using the light source intensity F,
ambient lighting a, surface normal 72, incident light direction
l;, reflectance function 7 and radiometric response function f
as

0, =f(Er(n-l;)+a), (1)

where n - 1; is a dot product of n and ;.

In this work, we assume three properties about the surface
reflectance r: monotonicity, visibility, and isotropy (Fig. 2).
These reflectance properties are observed in a wide range of
diffuse reflectances. In fact, it is pointed out that many ex-
isting diffuse materials deviate from the Lambertian model in
prior study [23, 17]. Fig. 1 shows an actual measurement
that deviates from the Lambertian model. Our reflectance
model covers such diffuse reflections as well as the Lamber-
tian model as a special case where r(n - 1) = pn - I, where p
is surface albedo.

Using these properties of monotonicity, visibility, and
isotropy, we derive three constraints in the form of inequali-
ties that specify possible solution spaces of the surface orien-
tation. Each of these three constraints independently gives a
solution space. Our method estimates surface orientations by
taking the intersection of these solution spaces. We only use
illuminated pixels for these constraints. The solution space of
surface normal 7 is initialized on a Gaussian sphere because
the surface normal 7 is a unit vector.

Monotonicity constraint We assume the following mono-
tonicity of the reflectance function r:

n-li>n-ljerin-l;)>rn-1l;). )
This monotonicity represents that as the dot product of sur-

face normal m and lighting direction [ increases, the re-
flectance r increases.
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Figure 3. Monotonicity, visibility, and isotropy constraints. Each of these three constraints gives a solution space of the surface orientation.
By taking the intersection of the solution spaces, our method obtains a smaller solution space of the surface orientation. The narrow arrows
represent the solution space, and the bold ones correspond to the true surface orientation. The two rows show how the solution space becomes

smaller as the number of observations increases.

These constraints hold even for unknown radiometric re-
sponse functions. In Eq. (1), the radiometric response func-
tion f is also monotonically increasing, and F and p are non-
negative. Therefore, f(r(x)) is also monotonically increas-
ing, so the intensity observation o monotonically increases as
n -l increases. This property eliminates the necessity of ra-
diometric calibration for our method and allows us to directly
use the following relationship regardless of the shape of the
response function f:

n-li>n-lj(:>0i>0j. 3)

Using inequalities (3) obtained from multiple observation
pairs (0;, 0;), the solution space N; of the surface orientation
n can be determined by taking the intersection of multiple
observations as

Ny ={necR?| ﬂ((li*lj)'">0)}’ )

for pairs of I; and [; that satisfy r(n - I;) > r(n -l;). The
pair of (I;,1;) makes the solution space specified on the north
hemisphere whose pole is (I; — I;) as illustrated in Fig. 3
(Left).

Visibility constraint When a scene point is illuminated by
a light source I, the surface normal n should lie in the hemi-
sphere -1 > 0. When n - I < 0, the scene point is in the
attached shadow, i.e., the scene point is not visible from the
light source. The visibility is defined as

No={n| m(n-li>0)}, (5)

for all lighting directions [; that illuminate the scene point.
A similar constraint is used by Belhumeur and Kriegman [5]

for describing possible light source directions. Because our
method only uses illuminated pixels, it is not necessary to
identify whether the pixel is in an attached or cast shadow.
Isotropy constraint In addition to the above two con-
straints, we use the isotropy constraint when multiple simi-
lar intensity observations are obtained. Suppose an ideal case
where more than two observations under different lighting di-
rections show the same intensity value. In this case, given
the different lighting directions I;, ;, and lj, the surface
normal 7 should fall on the direction that is perpendicular
to the plane spanned by the lighting vectors. It can be de-
termined up to a sign ambiguity by taking the cross-product
+(l; — 1) x (I; — lj). Such ideal situations are rare in prac-
tice, so we use a relaxed near-equality constraint:

n-ly~n-l; & o, ~o;. 6)

This represents that when similar intensity observations o are
obtained, the cosines of incident lighting direction and surface
normal are also similar.

When we have similar observations o;, (i = 1,2,...,k)
under different lighting directions 1;, we can expect that the
surface normal n lies near to the direction where the variance
of - I is minimized:

k
nz:l:n}%n;(nlifm)z, 7)

where n - I is the mean of the dot products. Using m such
normal directions n,,, obtained from m-sets of lighting direc-
tions, our method determines the solution space N3 that is
represented by a convex cone spanned by n,,, as

Ns={n|n=> amnm, an >0}. (8)



Figure 4. Monotonicity and isotropy constraints for the case of spec-
ular reflection. Left: The case of specular reflection. The reflectance
r monotonically increases with n - h and gives the same value when
n-h; = n-hj. We use the bisector h replacing the light vector I in
Eq. (1) for the specular lobes. Right: The case of diffuse reflection.

Consensus solution FEach of the monotonicity, visibil-
ity, and isotropy constraints independently gives a solution
space (Fig. 3). Our method takes the intersection of these to
form a smaller solution space N as

NZNl ﬂNz ﬂ./\[g,. C))

As the number of images increases, it is expected that the
solution space A/ becomes smaller.

2.1 Specular lobes

Our method can be extended naturally to handle specular
reflections by assuming monotonicity and isotropy for spec-
ular lobes. Here, we assume only specular reflection and no
diffuse reflection, like for metallic surfaces. In this case, as
shown in Fig. 4, the monotonicity and isotropy are assumed
with respect to the cosine of surface orientation n and the bi-
sector h (= (I +v)/|l + v|) between the light direction I and
the view direction v. The right-hand side of the figure depicts
the diffuse case for reference. In this way, by replacing the
light vector I; with the bisector h; in Eq. (1), the previous
discussion holds for the specular lobes. For the visibility con-
straint, since we do not know the width of specular lobes, we
still use n - I > 0 as the constraint.

3 Implementation

To efficiently estimate surface orientation n, we cast

the consensus approach to an energy minimization problem.
We develop energy terms for monotonicity, visibility, and
isotropy constraints, respectively. These energy terms are
computed at each pixel.
Monotonicity term From Eq. (4), we develop an energy
term that favors n - (I; — 1) > 0 being satisfied for observa-
tions o; > o;. Using a sigmoid-like function, we formulate
this constraint as

_L 1—]{Jn(l1_lj)
Bin) =+ 2 L+exp(tn - (I; — 1))’

4,3

(10)

for all pairs of (4,j) where 0; > o;. We use sigmoid-like
function to equally give a small cost when n - (I; — 1) >

\
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Figure 5. Plot of a function s(z) = (1 — kz)/(1 + €'*) used to
design energy terms. (k,t) = (5, 50) is used for the plot.
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0. In the energy term, ¢ is a gain, and /Ny is the number of
pairs (4, j) that are used for the computations. The numerator
is designed to form a slope that is determined by the factor
k so that more deviations from the constraint are penalized.
With such a slope, the optimization becomes more efficient
and quickly converges. Fig. 5 shows the form of the function
s(x) = (1 — kz)/(1+ €'*) that is used for Fj.

For efficient computation, we resample all possible com-

binations (i, 7) to reduce the number of pairs. We select Ny
observations o; that are close to o; while satisfying o; > o;,
because the similar intensity observation pairs (0;, 0;) tend to
give smaller solution spaces. However, the combinations that
are used for the isotropy constraint are excluded because of
the condition 0; > o;.
Visibility term We formulate the visibility constraint of
Eq. (5) in a similar manner with the monotonicity constraint
Eq. (10). Using a sigmoid-like function, the visibility term
F5 is formulated as

1 1—kn- ll

B ooy (P
where N5 is the number of observations that are illuminated,
i.e., the number of observations used for the estimation.
Isotropy term The isotropy constraint Eq. (8) gives a solu-
tion space from a set of lighting directions that produce simi-
lar intensity observations. The more similar the intensity ob-
servations are, the smaller the solution space becomes. We
formulate this as an energy function E3 that favors smaller
variances of the dot product n - I in each set of similar obser-
vations. Given m sets of similar observations S, the energy
term is defined as

Es(n) = Zn}'SZ Sn-ly— (1)’ (2

i jJES;

where S; is the i-th set of observation indices, |.S;| represents
the number of elements in the set, and (7 - I); is the mean of
the dot product n - [ in S;.
Energy function The energy function E is defined by com-
bining the above three constraints and an additional constraint
of a unit normal length as

E(n) = M E1(n)+ X\ Fy(n)+A3F3(n)+(1—|n|?)?, (13)



where \; represents a weighting factor. We use a Levenberg-
Marquardt method [4] to minimize the multivariate function
to estimate a surface normal vector per pixel. For initial-
ization, we use the lighting direction vector that shows the
highest intensity (without saturation) as the initial guess of
the normal vector. Before the optimization, we exclude low
intensity observations as shadow pixels and use only illumi-
nated observations o;.

How many lighting directions are required? As men-
tioned in Section 2, as the number of light directions in-
creases, the solution space becomes smaller. We analyze the
statistical relationship between the accuracy of the surface
normal estimate A and the number of light directions IV,
based on the analysis of Okabe et al. [16]. They pointed out
that the number of segments Ny, with a sphere divided up
by Ny, great circles becomes Ny, = 0.9 x NJ:8. Assuming
that Ny, equal-size disks with the area 7(A6)? cover the
entire solid angle of a sphere (47), we obtain an optimistic
estimate of the accuracy A§ ~ /4/Ng,,. This means that
it requires Nz > 200 for obtaining an accuracy of less than
one degree.

Suppose a half of N; are illuminated observations among
the entire NNV; observations, i.e., No = N;/2. In this case,
the visibility constraint provides N;/2 great circles. The
monotonicity constraint provides N, pairs for each observa-
tion o; (¢ = 1,2,..., Na). Therefore, the monotonicity con-
straint gives Nj;V;/2 great circles. In our experiments,
we use Nps = 8, and the total number of great circles is
Nge = N;/2 + 4N; = 4.5N;. Even without the isotropy con-
straint, this analysis indicates that given about 50 input im-
ages, our method can achieve an accuracy of less than one
degree.

4 Experiments

To evaluate the effectiveness of the proposed method, we
performed experiments using both simulation and real-world
scenes. We first show a quantitative evaluation using the sim-
ulation data in Section 4.1. Second, we evaluated our method
using five real-world scenes in Section 4.2. Throughout the
experiments, we used parameters k = 5, ¢t = 50, Np; = §,
A1 =8, A2 = 1, and A3 = 300 for diffuse objects. For specu-
lar objects, we only changed the weighting factor of isotropy
term to A5 = 30.

4.1 Simulation results

The simulation experiment is designed to quantitatively
examine the performance of the proposed method. We use
combinations of different settings; (1) linear/non-linear cam-
era response functions, (2) Lambertian/non-Lambertian re-
flectances, and (3) with/without ambient lighting. We rep-
resent these settings by Yes or No of {linear response func-
tion, Lambertian surface, ambient lighting}. For example
{Y, N, Y} means the combination of linear response func-
tion, non-Lambertian surface, and with ambient illumination.

A synthetic scene is rendered using these settings, and our
method is applied to each of these datasets. Fig. 6 (left)
shows the reference spheres rendered under these settings.
In the middle, the shapes of the non-linear response func-
tion and non-Lambertian diffuse reflectance are shown. The
right-hand side table shows the summary of the estimation
results. As shown in the table, our method is not susceptible
to ambient lighting, non-Lambertian diffuse reflection, and
non-linear response function, while the standard photometric
stereo method suffers under these non-ideal conditions.

4.2 Real-world results

We applied our method to various diffuse objects and
specular objects and compared with the standard photomet-
ric stereo method. We used five different scenes under various
conditions: (1) yellow sphere scene (Fig. 1, non-Lambertian),
(2) terracotta scene (non-linear response function), (3) statue
scene (with ambient illumination), (4) relief scene (non-linear
response function with ambient illumination), and (5) clip
scene (specular lobes).

We recorded the scenes using two different cameras: a
Sony color digital camera XCD-X710CR that has a linear re-
sponse function, and a Nikon D1x camera with a non-linear
response function. The scenes were illuminated by a mov-
ing LED point light source and recorded from a fixed view-
point. To obtain the light source directions, we used a mirror
sphere placed in the scene. We compare our method with the
standard photometric stereo method based on the Lambertian
model (referred to as ‘standard PS’ in the following). To use
the same input to both methods, shadow pixels were excluded
when the standard PS is applied.

Fig. 7 shows the result of the yellow sphere scene recorded
by a Sony XCD-X710CR. Our method recovers surface nor-
mals from a non-Lambertian diffuse reflectance scene more
accurately than the standard photometric stereo. The error
maps in the fourth and fifth figure in Fig. 7 clearly show the
deviation.

In Fig. 8, we show the result of the terracotta scene taken
with the Nikon D1x camera with a non-linear response func-
tion. The results of our method and the standard photomet-
ric stereo appear to be similar, but we can still see that our
method can obtain accurate orientations, e.g., on top of the
left hand of the terracotta soldier.

Fig. 9 shows the result of the statue scene under ambient il-
lumination taken by a Sony XCD-X710CR. Our method pro-
duces faithful surface orientations, while the standard pho-
tometric stereo produce overly smooth surface normals. On
computational cost, it takes 592[s] for the statue dataset (47
images, 480 x 490[pixel]) using a Core2Duo CPU (2.33GHz,
single thread).

The relief scene of Fig. 10 was taken with a Nikon D1x
camera with a non-linear response function, under ambient
lightings. Our method recovers surface orientations even
when the real scenes significantly deviate from classical as-



Our method Standard PS
mean | med | mean | med
{Y,Y,N} | 0.708 | 0.617 | 0.000 | 0.000
{Y,N,N} | 0.740 | 0.651 | 8.479 | 7.999
{N,Y,N} | 0.719 | 0.634 | 3.866 | 3.640
{N,N,N} | 0.737 | 0.647 | 8.541 | 7.855

— — {Y,Y, Y} | 0.705 | 0.622 | 5.320 | 4.920
e P o0 B YN, Y)Y | 0.741 | 0.658 | 8.412 | 7.793
Non-linear fesponse - Nontambertian Y, Y | 0.721 | 0.633 | 7.105 | 6.576
{N,N, Y} | 0.723 | 0.627 | 8.709 | 8.020
Figure 6. Simulation setup and results. Left shows the reference spheres rendered with the combinations of {(1) linear response function
Yes/No, (2) Lambertian: Yes/No, (3) ambient illumination: Yes/No }. In the middle, the shapes of the non-linear response function and
non-Lambertian reflectance that are used in this simulation are shown. The right table shows the mean and median RMSE [deg.] evaluation of
the estimated surface normals under corresponding rendering settings.
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Input Our method Standard PS Error of our method Error of standard PS Light directions
Figure 7. Result of our method applied to the yellow sphere with a non-Lambertian surface. From left to right, one of the input images, the
estimated normal map with our method, that with standard photometric stereo method, the corresponding errors from the ground truth, and the
sampled light directions are shown. The higher intensity in the error maps indicates the greater errors. 43 images are used as input.

{Y.Y.N} {Y*.N,N} {N,Y.N} {N,N,N}

000

Y, Y, Y} {Y,N,Y} {N,Y,Y} {N,N, Y}

sumptions, i.e., Lambertian reflectance, no ambient illumina-
tion, and a linear camera response.

The effect of the three constraints are evaluated in Fig. 11.
Monotonicity is a strong constraint, but large errors are found
in places. Isotropy alone also gives good estimates; however,
inaccurate surface normals are observed where the zenith an-
gle of surface normals is large, i.e., outward-looking surface
normals. The visibility constraint prevents large errors, espe-
cially for the outward-looking surface normals. These three
constraints work in a complementary manner, and the combi-
nation of all the three constraints gives the best result.

Fig. 12 shows the result of the clip scene containing specu-
lar lobes. Our method can estimate surface normals from the
specular lobes as well.
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Input Our method Standard PS
Figure 8. Result of the terracotta scene taken with a Nikon D1x cam-
era with a non-linear response function without ambient illumina-
tion. From left to right, one of the input images, the estimated nor-

.Fin"leYs Fig. 1% shows the rer.ldering of 3D surfaces and mal map with our method, that with the standard photometric stereo
relighting. The relief scene (left) is the reconstructed 3D, and method, the measured response function, and lighting directions are
the others are relighting results. The reference spheres depict shown. 46 images are used as input.

the lighting directions.

Currently, our method is limited to work with surfaces that

5 Discussion show either diffuse or specular reflection. To handle surfaces
We present a consensus approach for photometric stereo that have both diffuse and specular reflections, we are inter-
for a generalized reflectance model that holds three proper- ested in applying a color subspace method [26] for separating

these reflections. We are also interested in using shadowed
pixels. In our current method, we only use illuminated pix-
els for estimation; however, it has been shown in the previous
work [16] that shadow can be used as a cue for estimation.

ties: monotonicity, visibility, and isotropy. These properties
are naturally observed in a wide variety of diffuse reflection as
well as in specular lobes. In addition, our method eliminates
the necessity of radiometric calibration and any dependency
on the ambient illumination.



Input Our method

Standard PS Light directions

Figure 9. Result of the statue scene recorded by a Sony XCD-X710CR camera with a linear response function under ambient illumination.
From left to right, one of the input images, the estimated normal map with our method, and that of the standard photometric stereo method are
shown. The reference sphere is overlaid in the middle of the second and third figures. The light source directions are shown on the right. 47

images are used as input.
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Figure 10. Result of the relief scene taken with a Nikon D1x camera with a non-linear response function under ambient illumination. From
left to right, one of the input images, the estimated normal map with our method, that with standard photometric stereo method, and the light

directions. 47 images are used as input.

Light
directions

Input Normal map

Figure 12. Result of the clip scene captured with a Sony XCD-
X710CR camera. From left to right, one of the input images, the
estimated normal map, and the light directions are shown. 50 im-
ages are used as input.
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