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Abstract

This paper investigates the role that nonlinear camera

response functions (CRFs) have on image deblurring. In

particular, we show how nonlinear CRFs can cause a spa-

tially invariant blur to behave as a spatially varying blur.

This can result in noticeable ringing artifacts when decon-

volution is applied even with a known point spread function

(PSF). In addition, we show how CRFs can adversely affect

PSF estimation algorithms in the case of blind deconvolu-

tion. To help counter these effects, we introduce two meth-

ods to estimate the CRF directly from one or more blurred

images when the PSF is known or unknown. While not as

accurate as conventional CRF estimation algorithms based

on multiple exposures or calibration patterns, our approach

is still quite effective in improving deblurring results in sit-

uations where the CRF is unknown.

1. Introduction

Image deblurring is a long standing computer vision

problem for which the goal is to recover a sharp image from

a blurred image. Mathematically, the problem is formulated

as:

B = K ⊗ I + n, (1)

whereB is the captured blurred image, I is the latent image,

K is the point spread function (PSF), ⊗ is the convolution

operator, and n represents image noise.

One common assumption that is often taken for granted

is that the image B in Equation (1) responds in a linear

fashion with respect to irradiance, i.e., the amount of light

received by the sensor is proportional to the final image in-

tensity. This assumption, however, is rarely valid due to

nonlinear camera response functions (CRFs). CRFs vary

among different camera manufacturers and models due to

design factors such as compressing the scene’s dynamic

range or to simulate conventional irradiance responses of

film [7, 17]. Taking this nonlinear response into account,

the imaging process of Equation (1) can be considered as:

B = f(K ⊗ I + n), (2)

where f(·) is the CRF. To remove the effect of the nonlinear

CRF from image deblurring, the image B has to be first

linearized by the inverse CRF.

Contributions This paper offers two contributions with re-

gards to CRFs and their role in image deblurring. First, we

provide a systematic analysis of the effect that a CRF has

on the blurring process and show how a nonlinear CRF can

make a spatially invariant blur behave as a spatially varying

blur around edges. This causes adverse performance in im-

age deblurring methods that results in ringing artifacts about

edges that cannot be completely eliminated by regulariza-

tion. Our analysis also shows that PSF estimation for var-

ious blind deconvolution algorithms are adversely affected

by the nonlinear CRF. Our second contribution introduces

two algorithms to estimate the CRF from one or more im-

ages: the first method is based on a least-square formation

when the PSF is known; the second method is formulated

as a rank minimization problem when the PSF is unknown.

Both of these approaches exploit the relationship between

the blur profile about edges in a linearized image and the

PSF. While our estimation methods cannot compete with

well-defined radiometric calibration methods based on cal-

ibration patterns or multiple exposures, they are useful to

produce a sufficiently accurate CRF for improving deblur-

ring results.

2. Related work

Image deblurring is a classic problem with well-studied

approaches including Richardson-Lucy [19, 22] and Wiener

deconvolution [29]. Recently, several different directions

were introduced to enhance the performance of deblurring.

These include methods that use image statistics [6, 13, 9],

multiple images or hybrid imaging systems [1, 24, 25, 32],

and new blur models that account for camera motion [26,

27, 28]. The vast majority of these methods, however, do
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Figure 1. This figure shows a simple step edge image that has been blurred by two different PSF kernels: a 1D motion PSF with uniform

speed (kernel A) and a 1D PSF with non-uniform speed (kernel B). These blurred images are transformed with a linear CRF (a)(c), and with

a nonlinear CRF (b)(d). The 1D PSF and the 1D slice of intensity values are also shown. (e)-(h) show non-blind deconvolution results of

(a)-(d) using Wiener filter. (i)-(l) show non-blind deconvolution results of (a)-(d) using an iterative re-weighting method [14] with sparsity

regularization.

not consider the nonlinearity in the imaging process due to

CRFs.

The goal of radiometric calibration is to compute a CRF

from a given set of images or a single image. The most ac-

curate radiometric calibration algorithms use multiple im-

ages with different exposures [5, 7, 10, 18, 12]. Our work is

more related to single-image based radiometric calibration

techniques [16, 17, 21, 20, 30]. In [16], the CRF is com-

puted by observing the color distributions of local edge re-

gions: the CRF is computed as the mapping that transforms

nonlinear distributions of edge colors into linear distribu-

tions. This idea is further extended to deal with a single

gray-scale image using histograms of edge regions in [17].

In [30], a CRF is estimated by temporally mixing of a step

edge within a single camera exposure by the linear mo-

tion blur of a calibration pattern. Unlike [30], however, our

method deals with uncontrolled blurred images.

To the best of our knowledge, there are only a handful of

previous works that consider CRFs in the context of image

deblurring. Examples include work by Fergus et al. [6],

where images are first linearized by an inverse gamma-

correction with γ = 2.2. Real world CRFs, however, are

often drastically different from gamma curves [7, 15]. An-

other example by Lu et al. [18] involves reconstructing a

high dynamic range image from a set of differently exposed

and possibly motion blurred images. Recent work by Cho et

al. [3] discussed nonlinear CRFs as a cause for artifacts in

deblurring, but provided little insight into why such arti-

facts arise. Their work suggested to avoid this by using a

pre-calibrated CRF or the camera’s RAW output. While

a pre-calibrated CRF is undoubtedly the optimal solution,

the CRF may not always be available. Moreover, work by

Chakrabarti et al. [2] suggests that a CRF may be scene de-

pendent when the camera is in “ auto mode”. Recent work

by Lin et al. [15] showed that the CRF for a given cam-

era may vary for different camera picture styles (e.g., land-

scape, portrait, etc).

Our work aims to provide more insight into the effect

that CRFs have on the image deblurring process. In addi-

tion, we seek to provide a method to estimate a CRF from

a blurred input image in the face of a missing or unreliable

pre-calibrated CRF.

3. Effects of the CRF in image deblurring

To focus our analysis, we follow previous work by as-

suming that the image noise is negligible (i.e., n ≈ 0 in

Equation (2)) and that the PSF is spatially invariant.

3.1. Effects on PSF and image deconvolution

We begin our analysis using synthetic examples shown

in Figure 1. An image with three different intensity levels

(Black, Gray, and White) is blurred with 1D motion PSFs

with uniform speed (kernel A) and non-uniform speed (ker-

nel B) to generate the observations in Figure 1 (a)(b) and
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Figure 2. This figure illustrates the problem when the image in-

tensities are re-mapped according to different part of the camera

response function. Two identical edge profiles at different inten-

sity ranges are re-mapped to have different shapes.
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Figure 3. This figure shows examples of PSF kernels from several

images with linear CRF (left columns) or nonlinear CRF (right

columns). PSF kernels in the same row of (a)-(d) are from the

same image with different estimated methods: (a) Fergus et al. [6];

(b) Shan et al. [23]; (c) Xu and Jia [31]; (d) Cho et al. [4].

Figure 1 (c)(d) respectively. A real CRF 1 is used to non-

linearly re-map the image intensity in Figure 1 (b)(d) after

convolution.

In this example, we can observe how the blur profiles

of an image becomes spatially varying after the nonlinear

re-mapping of image intensities even though the underlying

motion PSF is spatially invariant. With a linear CRF, the

blur profile from the black to gray region (first step edge) is

the same as the blur profile from the gray to white region

(second step edge) as shown in Figure 1 (a)(c). However,

with a nonlinear CRF, the two blur profiles become different

as shown in Figure 1 (b)(d). This is because the slope and

the curvature of the CRF are different for different range of

intensities. Figure 2 helps to illustrate this effect.

To examine the effect that these cases have on image

deblurring, we performed non-blind deconvolution on the

synthetic images as shown in the second and third rows of

Figure 1. The second row shows the results of Wiener filter-

ing [29] while the third row shows the results of [14] with

sparsity regularization. Without using any regularization,

the deblurring results of both the linear and nonlinear CRF

contain ringing artifacts due to the zero component of the

PSF in the frequency domain. However, the magnitude of

these ringing artifacts in the nonlinear CRF result is signif-

1Pre-calibrated CRF of a Cannon G5 camera in standard mode is used.
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Figure 4. This figure shows how the edge profile of a step edge in a

motion blurred image is equal to the cumulative distribution func-

tion of the marginal probability of the motion blur kernel along the

direction perpendicular to the edge.

icantly larger than the one with the linear CRF. The use of

image regularization [14] helps to reduce the ringing arti-

facts, but the regularization is less effective in the case of a

nonlinear CRF even with a very large regularization weight.

Hence, the CRF plays a significant role in quality of the im-

age deblurring.

3.2. Effects on PSF estimation

We also analyze the effects of a CRF on the PSF estima-

tion by comparing the estimated PSF between a linear and

nonlinear CRF. We show the estimated PSFs from Fergus et

al. [6], Shan et al. [23], Xu and Jia [31] and Cho et al. [4] in

Figure 3. The raw images from [4] were used for our testing

purpose.

Ideally, the CRF should only affect the relative intensity

of a PSF, but the shape of a PSF should remain the same

since the shape of the PSF describes the trajectory of mo-

tion causing the motion blur, and the intensity of the PSF

describes the relative speed of the motion. However, as we

can observe in Figure 3, the estimated PSFs are noticeably

different, especially for the results from [6] and [23]. This

is because both [6] and [23] use alternating optimization

for their non-blind deconvolution. As previously discussed,

the nonlinear CRF causes errors during the deconvolution

process which in turn propagates the errors to the estimated

PSF in an alternating optimization framework. The results

from [31] and [4] contains less errors because they sepa-

rate the process of PSF estimation and image deconvolu-

tion. However, the shape of the estimated PSF are still

different. The method in [31] requires edge selection and

sharpening, and the method in [4] requires edge profiles to

be aligned. Since the nonlinear CRF alters the edge pro-

files in the blurred image, their estimated PSF also contains

errors inherent from non-uniform edge profiles. Note that

small errors in PSF estimation can causes significant arti-

facts in subsequent deconvolution.

4. CRF approximation from a blurred image

In this section, we describe a method to estimate the CRF

from one or more blurred images. To begin, we examine the

relationship between the PSF and edge profiles in a blurred

image under a linear CRF assumption. We then describe a



method to estimate the CRF based on this relationship using

least-squares fitting assuming a known PSF. This method is

then converted to a robust estimation of an unknown PSF

and a CRF using rank minimization.

4.1. PSF and edge profiles

We begin with the observation that the shape of a blur

profile with the linear CRF resembles the shape of the

cumulative distribution of the 1D PSF as shown in Fig-

ure 1 (a)(c). Our analysis is similar in fashion to that in

[9] which used alpha mattes of blurred object to estimate the

PSF. Our approach, however, works directly from the image

intensities and requires no matting or object extraction. In-

stead, we only need to identify the step edges with homoge-

neous areas on both sides. For such edges, the shape of the

blur profile is equal to the shape of the cumulative distribu-

tion of the 1D PSF. Consider a simple case where the orig-

inal step edge has values [0, . . . , 0, 1, . . . , 1] and the values

of the PSF is [α1, α2, . . . , αM ]. If the number of 0’s and 1’s

are both larger than M , the blur profile after the motion blur

is equal to [α1, α1 + α2, . . . ,
∑M

i=1 αi], which is the cumu-

lative distribution of the 1D PSF. For any edges with inten-

sities [I1, I2], the value of the blur profile at m ∈ [1, . . . ,M ]
after the blur is equal to I1 +

∑m

i=1 αi(I2 − I1). In the case

of a 2D PSF this observation still holds when the edge is a

straight line. In this case, the 1D PSF becomes the marginal

probability of the 2D PSF projected onto the line perpen-

dicular to the edge direction as illustrated in Figure 4.

4.2. CRF approximation with a known PSF

Considering that the shape of blurred edge profiles are

equal to the shape of the cumulative distribution of the PSF2

if the CRF is linear, if we are given the PSF, we can compute

the CRF as follows:

argmin
g(·)

E1
∑

j=1

M
∑

m=1

wj

(

g(Ij(m))− lj

wj

−

m
∑

i=1

αi

)2

+

E2
∑

j=1

M
∑

m=1

wj

(

g(Ij(m))− lj

wj

−

M
∑

i=m

αi

)2

, (3)

where g(·) = f−1(·) is the inverse CRF function, E1 and

E2 are the numbers of selected blurred edge profiles from

dark to bright regions and from bright region to dark re-

gions, respectively.

The variables lj and wj are the minimum intensity value

and the intensity range (intensity difference between the

maximum and the minimum intensity values) of the blurred

edge profiles after applying the inverse CRF. Blur profiles

that span a wider intensity range are weighted more because

2For simplicity, we assume that the PSF is 1D, and it is well aligned

with the edge orientation. If the PSF is 2D, we can compute the marginal

probability of the PSF.

their wider dynamic range covers a larger portion of g(·),
and therefore provide more information about the shape of

g(·).
We follow the method in [30] and model the inverse CRF

g(·) using a polynomial of degree d = 5 with coefficients

ap, i.e., g(I) =
∑d

p=0 apI
p. The optimization is subject to

boundary constraints g(0) = 0 and g(1) = 1, and a mono-

tonicity constraint that enforces the first derivative of g(·) to

be non-negative. Our goal is to find the coefficients ap such

that the following objective function is minimized:

argmin
ap

E1
∑

j=1

M
∑

m=1

wj

(

∑d

p=0 apIj(m)p − lj

wj

−

m
∑

i=1

αi

)2

+

E2
∑

j=1

M
∑

m=1

wj

(

∑d

p=0 apIj(m)p − lj

wj

−

M
∑

i=m

αi

)2

+λ1



a20 +

(

d
∑

p=0

ap − 1

)2




+λ2

255
∑

r=1

H

(

d
∑

p=0

ap

((

r − 1

255

)p

−

( r

255

)p
)

)

,(4)

where H is the Heviside step function for enforcing the

monotonicity constraint, i.e., H = 1 if g(r) < g(r − 1),
or H = 0 otherwise. The weights are fixed to λ1 = 100
and λ2 = 10, which control the boundary constraint and the

monotonic constraint, respectively. The solution of Equa-

tion (4) can be obtained by a simplex search method of La-

garias et al. [11]3.

4.3. CRF estimation with unknown PSF

Using the cumulative distribution of the PSF can reli-

ably estimate the CRF under ideal conditions. However, the

PSF is usually unknown in practice. As we have studied in

Section 3.2, nonlinear CRF affects the accuracy of the PSF

estimation, which in turn will affect our CRF estimation de-

scribed in Section 4.2. In this section, we introduce a CRF

estimation method without explicitly computing the PSF.

As previously discussed, we want to find an inverse re-

sponse function g(·) that makes the blurred edge profiles

have the same shape after applying the inverse CRF. This

can be achieved by minimizing the distance between each

blur profile to the average blur profile:

argmin
g(·)

E1
∑

j=1

M
∑

m=1

wj

(

g(Ij(m))− lj

wj

−A1(m)

)2

+

E2
∑

j=1

M
∑

m=1

wj

(

g(Ij(m))− lj

wj

−A2(m)

)2

, (5)

3fminsearch function in Matlab.



where A1(m) =
∑E1

k=1
wk

W
g(Ik(m)) is the weighted av-

erage blur profile, and W =
∑E1

l=1 wl is a normalization

factor.

Using the constraint in Equation (5), we can compute the

CRF, however, this approach is unreliable not only because

the constraint in Equation (5) is weaker than the constraint

in Equation (3), but the nature of least-squares fitting is very

sensitive to outliers. To avoid these problems, we general-

ize our method to robust estimation via rank minimization.

Since the CRF of images from the same camera is the same,

our generalized method can be extended to handle multiple

motion blurred images which allow us to achieve accurate

CRF estimation even without knowing the PSF.

Recall that the edge profiles should have the same shape

after applying the inverse CRF. This means that if the CRF

is linear, the edge profiles are linearly dependent with each

other, and hence the observation matrix of edge profiles

form a rank-1 matrix for each group of edge profiles:

g(M)=







g(I1(1))− l1 · · · g(I1(M))− l1
...

. . .
...

g(IE1
(1))− lE1

· · · g(IE1
(M))− lE1






,(6)

where M is length of edge profiles, and E1 is the number

of observed edge profiles grouped according to the orienta-

tion of edges. Now, we transform the problem into a rank

minimization problem which finds a function g(·) that mini-

mizes the rank of the observation matrixM of edge profiles.

Since the CRF is the same for the whole image, we define

our objective function for rank minimization as follow:

argmin
g(·)

K
∑

k=1

wkrank(g(Mk)), (7)

where K is total number of observation matrix (total num-

ber of group of edge profiles), wk is a weight given to each

observation matrix. We assign larger weight to the obser-

vation matrix that contains more edge profiles. Note that

Equation (7) is also applicable to multiple images since the

observation matrix are built individually for each edge ori-

entation and for each input image.

We evaluate the rank of matrix M by measuring the ratio

of its singular values:

argmin
g(·)

K
∑

k=1

wk

Ek
∑

j=2

σkj

σk1
, (8)

where σkj are the singular values of g(M)k. If the ob-

servation matrix is rank-1, only the first singular values is

nonzero and hence minimizes Equation (8). In our experi-

ments, we found that Equation (8) can be simplified to just

measuring the ratio of the first two singular values:

argmin
g(·)

K
∑

k=1

wk

σk2

σk1
. (9)

Combining the monotonic constraint, the boundary con-

straint and the polynomial function constraint from Equa-

tion (4), we obtain our final objective function:

argmin
ap

K
∑

k=1

wk

σk2

σk1
+ λ1



a20 +

(

d
∑

p=0

ap − 1

)2


 (10)

+λ2

255
∑

r=1

H

(

d
∑

p=0

ap

((

r − 1

255

)p

−

( r

255

)p
)

)

.

Equation (10) can be solved effectively using nonlinear

least-squares fitting4.

4.4. Implementation issues for 2D PSF

Our two proposed methods for CRF estimation are based

on the 1D blur profile analysis. Since, in practice, PSFs are

2D in nature, we need to group image edges with similar

orientation and select valid edge samples for building the

observation matrix. We use the method in [4] to select the

blurred edges. Method in [4] filters edges by only keeping

high contrast straight-line edges. After we select valid edge

profiles, we group the edge profiles according to edge ori-

entations. In [4], edges were aligned according to the center

of mass. In our case, however, to deal to the nonlinear CRF

effects, alignment based on the center of mass is not reli-

able. We instead align the edge profiles by aligning the two

end points of edges.

Our method uses a nonlinear least-squares fitting for the

rank minimization. This method can be sensitive to the ini-

tial estimation of the CRF. In our implementation, we use

the average CRF profile from the database of response func-

tions (DoRF) created by Grossberg and Nayar [8] as our

initial guess. The DoRF database contains 201 measured

functions which allows us to obtain a good local minima in

practice.

5. Experimental results

In this section, we evaluate the performance of our CRF

estimation method using both synthetic and real examples.

In the synthetic examples, we test our algorithm under dif-

ferent conditions in order to better understand the behaviors

and the limitations of our method. In the real examples,

we evaluate our method by comparing the amount of ring-

ing artifacts with and without CRF intensity correction to

demonstrate the effectiveness of our algorithm and the im-

portance of CRF in the context of image deblurring.

5.1. Synthetic examples

Figure 5 shows the performance of our CRF estimation

under different conditions. We first test the effects of the

intensity range of the blur profiles in Figure 5 (a). In a real

4lsqnonlin function in Matlab.
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Figure 5. We test the robustness of our CRF estimation method under different configurations. (a) Blur profiles with different intensity

ranges, (b) edges in the original image contains mixed intensities (edge width is equal to 3 pixels), (c) Gaussian noise (σ = 0.02) is added

according to Equation (2), (d) the union of intensity range of all blur profiles does not cover the whole CRF curve. (e) Blur profiles of (a),

(b), (c), (d). The original image (black lines), the blurred image with linear CRF (red lines), and the blurred image with nonlinear CRF

(blue lines) are shown on top of each figure in (a)-(d). (f)-(i) the corresponding estimated inverse CRF using our methods with (a)-(d). (j)

the corresponding estimated inverse CRF with multiple images in (e).

application, it is uncommon that all edges will have a sim-

ilar intensity range. These intensity range variations can

potentially affect the estimated CRF as low dynamic range

edges usually contain larger quantization errors. As shown

in Figure 5 (f), our method is reasonably robust to these in-

tensity range variations.

Our method assumes that the original edges are step

edges. In practice, there may be color mixing effect even

for an edge that is considered as a sharp edge. In our ex-

periments, we find that the performance of our approach

degrades quickly if the step edge assumption is violated.

However, as shown in Figure 5 (g), our approach is still ef-

fective if the color mixing effects is less than 3 pixel width

given a PSF with size 15. The robustness of our method

when edge color mixing is present depends on the size of

PSF with our approach being more effective for larger PSFs.

Noise is inevitable even when the ISO of a camera is

high. We test the robustness of our method against im-

age noise in Figure 5 (c). We add Gaussian noise to Equa-

tion (2) where the noise is added after the convolution pro-

cess but before the CRF mapping. As can be observed in

Figure 5 (h), the noise affects the accuracy of our method.

In fact, using the model in Equation (2), we can observe that

the noise has also captured some characteristics of the CRF.

The magnitude of noise in the darker region is larger than

the magnitude of noise in the brighter region. Such informa-

tion may even be useful and combined into our framework

to improve the performance of our algorithm as discussed

in [20].

We test the sensitivity of our algorithm if the union of

blur profiles does not cover the whole range of CRF. As we

can be seen in Figure 5 (i), our method still gives reasonable

estimations. This is because the polynomial and monotonic-

ity constraint assist in maintaining the shape of CRF. Note

that having limited range of intensities will degrade the per-

formance of all radiometric calibration methods.

Finally, we show a result where we use all input images

to estimate the CRF. As expected, more input images give a

more accurate CRF estimation.

Among all the synthetic experiments, we found that the

performance of our method depends on the quality of the

blur profiles and not only the quantity of observed blur pro-

files. For instance, a blur profile with a large motion cover-

ing a wide intensity range is better than the combination of

blur profiles that cover only a portion of intensity range.

When combining the observations from multiple images,

our estimated CRF is more accurate as the mutual infor-

mation from different images increase the robustness of our

algorithm. The rank minimization also makes our algorithm

less sensitive to outliers.

5.2. Real examples

We test our method using real examples in Figure 6.

Since the goal of this work is to understand the role of the

CRF in the context of image deblurring, and hence to im-

prove the performance of existing deblurring algorithm, we

evaluate our method by comparing the amount of ringing

artifacts in the deblurred image in addition to the accuracy

of our estimated CRF.

We estimate the inverse CRF using the method in Sec-

tion 4.3. Although we can include the PSF information into

our estimation, as discussed in Section 4.3, it is possible

that the errors in the PSF would be propagated to the CRF.

We therefore separate the CRF estimation step and the PSF

estimation step. The accuracy of our estimated CRF for the

real examples does not depend on the PSF estimation algo-
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Figure 6. Our result with real examples: (a) input images; (b) estimated CRFs; (c) deblurred images with gamma correction; (d) deblurred

images with CRF correction.

rithm. In our implementation, we choose the method in [31]

to estimate the PSF and the method in [14] with sparsity

regularization for deconvolution.

Figure 6 show the results from the input image in (a) that

is captured by Canon EOS 400D (first row) and a Nikon

D90 DSLR (second and third rows) camera with a nonlinear

CRF. The results in (b) are the estimated CRF using single

and multiple images. The ground truth CRFs were com-

puted by using method in [12] with calibration pattern. For

reference, we have also show the inverse gamma-correction

curve with γ equal to 2.2. This is the common method sug-

gested by previous deblurring algorithm [6] when the CRF

is nonlinear. Note the shape of inverse gamma-correction

curve is very different from the shape of ground truth and

our estimated CRF. We compare the results with gamma

correction (γ = 2.2) and with our estimated CRF correc-

tions in (c) and (d) respectively. As expected, our results

with CRF corrections are better – not only do the deblur-

ring results contain less artifacts, but the estimated PSFs are

also more accurate after CRF correction.

6. Discussion and summary

This paper offers two contributions targeting image de-

blurring in the face of nonlinear CRFs. First, we have pre-

sented an analysis on the role that nonlinear CRFs play in

image deblurring. We showed that a nonlinear CRF can

change a spatially invariant blur into one that is spatially

varying. This caused notable ringing artifacts in the decon-

volution process which cannot be completely ameliorated

by image regularization. We also demonstrated how the

nonlinear CRF adversely affects PSF estimation for several

state-of-the-art techniques. In Section 4, we discussed how

the shape of edge projections resemble the cumulative dis-

tribution function of 1D PSFs for linear CRFs. This obser-

vation was used to formulate two CRF estimation strategies

for when the motion blur PSF kernel is known or not known.

In the latter case, we showed how rank minimization can be

used to provide a robust estimation. Experimental results

in real examples demonstrated the importance of intensity

linearization in the context of image deblurring. For future

work we are interested to see if our approach can be ex-

tended to images with spatially varying motion blur such as

camera rotational blur [27].
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