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Decorating Surfaces with Bidirectional Texture Functions

Kun Zhou, Peng Du, Lifeng Wang, Yasuyuki Matsushita, Jiaoying Shi, Baining Guo, and Heung-Yeung Shum

Abstract— We present a system for decorating arbitrary sur-
faces with bidirectional texture functions (BTF). Our system
generates BTFs in two steps. First, we automatically synthesize a
BTF over the target surface from a given BTF sample. Then we
let the user interactively paint BTF patches onto the surface, such
that the painted patches seamlessly integrate with the background
patterns. Our system is based on a patch-based texture synthesis
approach known as quilting. We present a graphcut algorithm
for BTF synthesis on surfaces, and the algorithm works well for
a wide variety of BTF samples, including those which present
problems for existing algorithms. We also describe a graphcut
texture painting algorithm for creating new surface imperfections
(e.g., dirt, cracks, scratches) from existing imperfections found
in input BTF samples. Using these algorithms we can decorate
surfaces with real-world textures that have spatially-variant re-
flectance, fine-scale geometry details, and surfaces imperfections.
A particularly attractive feature of BTF painting is that it allows
us to capture imperfections of real materials and paint them onto
geometry models. We demonstrate the effectiveness of our system
with examples.

Index Terms— bidirectional texture function, texture synthesis,
interactive surface painting.

I. INTRODUCTION

Texture mapping was introduced in [5] as a way to add

surface detail without adding geometry. Texture-mapped poly-

gons have since become the basic primitives of the standard

graphics pipeline. Unfortunately, texture-mapped surfaces do

have a distinctive look that sets them apart from reality: they

cannot accurately respond to changes in illumination and view-

point. Real-world surfaces often are not smooth but covered

with textures that arise from both spatially-variant reflectance

and fine-scale geometry details known as mesostructures [16].

Real surfaces also exhibit imperfections, e.g., dirt, cracks,

and scratches, which usually result from rather complicated

physical processes. Capturing these surface characteristics is

a challenging goal for computer graphics.

To bring us closer to that goal, we develop a system

for decorating arbitrary surfaces with BTFs [6]. Our system

supports two high-level texturing operations: tiling and paint-

ing. Given a BTF sample, the tiling operation automatically

synthesizes a BTF that fits the target surface naturally and

seamlessly. The BTF can model spatially-variant reflectance

and mesostructures. Moreover, the BTF can be measured from

real materials. Thus the tiling operation provides a convenient

way to cover a surface with fairly realistic textures.

Manuscript received January 20, 2002; revised August 13, 2002.
K.Zhou, L.Wang, Y.Matsushita, B.Guo and H.-Y. Shum are with Microsoft

Research Asia, 3F, Beijing Sigma Center, No. 49, Zhichun Road, Haidian
District, Beijing 100080, PRC. E-mail: {kunzhou, lfwang, yasumat, bainguo,
hshum}@microsoft.com.

P.Du and J.Shi are with Zhejiang University, Hangzhou 310027, PRC. This
work was done while P.Du was intern at Microsoft Research Asia. E-mail:
{dupeng, jyshi}@cad.zju.edu.cn.

Fig. 1. Decorating arbitrary surfaces using BTFs. Left: Result of BTF
synthesis. Right: Result after introducing surface imperfections into the
homogeneous BTF shown on the left.

The painting operation further enhances realism by intro-

ducing imperfections and other irregular features as shown in

Fig. 1 and Fig. 7. This operation is valuable because BTFs

generated by our synthesis algorithm, as well as by most

other synthesis algorithms, are homogeneous across the whole

surface. With the painting operation, we can break this global

homogeneity by adding irregular local features. In particular,

we can capture imperfections of real materials and paint them

onto the surface, such that the painted imperfections fit in

seamlessly with the background patterns. 3D painting is a

well-established technique for creating patterns on surfaces

[13]. BTF painting extends traditional techniques in two ways.

First, it provides a way to achieve superior realism with BTFs

measured from real materials. Second, BTF painting reduces

the demand on artistic talents and the tedium of creating

realistic imperfections.

There are two main challenges in developing our system.

First, BTF synthesis on surfaces remains hard for many BTF

samples. The most difficult problem is maintaining mesostruc-

tures of the input BTF sample. An existing algorithm [26]

addresses this problem with partial success. However, synthe-

sizing a BTF pixel-by-pixel as in [26] leads to fundamental

problems (e.g., L2-norm being a poor measure for perceptual

similarity [1]) in maintaining mesostructures. An alternative

is to synthesize BTFs by copying patches of the input sample

(i.e., quilting [8]). Since mesostructures are copied along

with the patches, this approach is particularly effective for

maintaining mesostructures. Unfortunately, patch seams still

present a problem for BTFs. Although techniques exist for

hiding seams in surface textures, these techniques do not

generalize well to BTFs. For example, [21] used blending

to hide patch seams, but blending will create inconsistent

mesostructures in the blended areas (e.g., see [26]).

We present an algorithm for quilting BTF patches by

using graphcut [3], [17] to minimize the discontinuity across
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Fig. 2. A straightforward extension of graphcut to [25] leads to suboptimal
quality when the synthesis results are viewed from a close distance, as the
results in the middle column demonstrate. These results are obtained by
incorporating graphcut into [25], which works directly on the original input
mesh (left column, top). Notice the patch seams. The right column shows
results produced by the GIM-based sampling approach. The input texture
sample is shown in the left column (bottom).

patch seams on arbitrary surface meshes. A straightforward

extension of graphcut to hierarchical pattern mapping [25]

can be used to generate texture coordinates for each triangle

of the mesh. However this would lead to textures that reveal

patch seams when viewed close up. This could be a potential

problem for any attempt to apply graphcut on surfaces. Our

algorithm solves this problem by densely re-sampling the

surfaces using geometry images [12]. We call this approach

GIM-based sampling. Specifically, given an input mesh we

create a dense mesh by densely sampling the input mesh using

multi-chart geometry images (MCGIM) [24]. The texture syn-

thesis is accomplished by using graphcut to generate texture

coordinates for each vertex of the dense mesh. Because a

texture value is computed for each vertex of the dense mesh,

the synthesized textures can be viewed from any distance

just like those obtained with pixel-based algorithms (e.g.,

[26]). Fig. 2 compares the results of the GIM-based sampling

approach with a straightforward extension of graphcut to [25].

The second challenge we face is finding a user-friendly

way to introduce irregular features into a background pattern.

Graphcut techniques suggest a straightforward approach to

merging a foreground feature with the background pattern,

i.e., we simply constrain the feature to a desired location and

use graphcut to find the merging seam. However, this approach

only supports verbatim copying of existing features. To allow

the user to generate new features, we formulate the constrained

graphcut problem for texture and BTF painting. For texture

synthesis, only smoothness energy is considered for finding

seams that minimize discontinuity [17]. For texture painting,

both smoothness and constraint energies are used so that the

user’s specification of the new feature is incorporated into the

graphcut problem as constraints. Generating a new feature with

the graphcut painting algorithm is easy. The user only needs

to specify the rough shape and location of the desired new

feature; our system will synthesize the actual feature and have

it merged seamlessly with the background pattern.

We demonstrate the effectiveness of our system with a va-

riety of examples. Note that our techniques work for ordinary

color textures, which may be regarded as BTFs with a single

viewing direction and a single lighting direction.

II. RELATED WORK

Texture Synthesis: Algorithms for synthesizing textures on

surfaces can be divided into two categories. The first category

[11], [27], [29], [32], [26], [33], [34] is based on per-pixel non-

parametric sampling [9], [28]. Per-pixel sampling is suscepti-

ble to the problems caused by the fact that the commonly used

L2-norm is a poor measure of perceptual similarity. For this

reason algorithms in this category have difficulty maintaining

texture patterns with certain types for textures [1], [14], [34].

Currently there is no general solution, but remedies exist for

various specific scenarios [1], [34].

Algorithms in the second category synthesize textures by

copying patches of the input texture sample. Since texture

patterns are directly copied onto the target surface, these

algorithms are not seriously affected by the issue with the

L2-norm. Earlier algorithms randomly paste patches and use

alpha-blending to hide patch seams [23], [31]. Quilting [8],

[19], [25], [21], [17] generates significantly better results by

carefully placing patches to minimize the discontinuity across

patch seams. After placing patches, [19], [21] simply use

alpha-blending to hide patch seams, while [8], [17] further

enhance the smoothness across the seams by searching for the

“min-cut” seams.

For image textures, [17] recently demonstrated that quilting

with graphcut produces arguably the best results on the largest

variety of textures. In this paper we show how to perform

graphcut on surfaces.

Decorating Surfaces: For decorating implicit surfaces, [22]

proposed a set of texturing operations which include tiling

and positioning of small images onto surfaces. [15], [10], [4]

presented several 3D surface painting systems. For decorating

surfaces with imperfections, existing techniques (e.g., [2], [30],

[7] mostly focus on generating synthetic surface imperfections.

Complementary to their approaches, our techniques synthesize

imperfections from real-world and synthetic samples.

III. BTF SYNTHESIS

Given a mesh M and input BTF sample, we first build a

dense mesh Md and then synthesize a BTF value for each

vertex of Md by quilting patches of the input sample on Md.

A. GIM-based Sampling

As mentioned, it is possible to incorporate graphcut tech-

niques into a synthesis algorithm that works directly on the

original input mesh. One such algorithm is pattern mapping

[25], which generates texture coordinates for each triangle of

the input mesh. Unfortunately, the synthesis results are not

ideal when viewed from a close distance, as Fig. 2 demon-

strates. With the pattern mapping approach, two adjacent

triangles on the mesh may be far apart in the texture space.

During texture synthesis, textures on two such triangles are

matched at a fixed sampling resolution (this resolution is a
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Fig. 3. Construction of a dense mesh for BTF synthesis. (a) and (b) Texture
atlas. (c) and (d) Multi-chart geometry image mesh (MCGIM), which samples
a surface using a regular grid. Each mesh vertex is a grid point.

parameter of the synthesis algorithm). When synthesis results

are viewed at a higher resolution, the seam between the two

triangles becomes noticeable.

Our GIM-based sampling approach provides an effective

and general solution for applying graphcut to surfaces. From

the input mesh M , we construct the dense mesh Md as an

MCGIM [24]. The MCGIM uses a texture atlas to resample

M and zippers chart boundaries to obtain a “watertight”

mesh Md. We create the texture atlas using the method

proposed in [35], which partitions a mesh into fairly large

charts and parameterizes the charts with minimized stretch.

Fig. 3 provides an example of MCGIM. The sampling rate

of the MCGIM is a user-specified parameter. For examples

reported in this paper, the sampling rate is either 512 × 512
or 1024 × 1024.

The main advantage of the dense mesh Md is the one-

to-one correspondence between vertices of Md and pixels in

the texture atlas. Because of the correspondence, synthesizing

BTF values for vertices on Md is the same as that for

pixels of the charts of the texture atlas. The pixel-vertex

correspondence makes it easy to flatten a large patch of Md

without introducing noticeable texture distortion. In fact, for

a pixel in the interior of a chart, the pixel’s 2D neighborhood

directly provides neighboring samples and a local flattening.

We will use the pixel-vertex correspondence to simultaneously

work on a surface patch of Md and its corresponding image

and switch freely between the two.

B. Quilting on the Dense Mesh

From the input of an MCGIM Md and a BTF sample S,

the pseudo-code shown in Fig. 4 produces BTF values of all

vertices of Md.

The algorithm synthesizes the surface BTF by copying

patches of the sample BTF. Each time, the next BTF patch Pb

to be generated is around an un-synthesized vertex v which

While there are still un-synthesized vertices in Md do
pick the most constrained un-synthesized vertex v

build a work patch P (v) centered at v

found work patch = FALSE
While found work patch == FALSE do

If P (v) lies inside a single chart
found work patch = TRUE
obtain the work image I(v) from the chart

Else
parameterize P (v) using LSCM
If parameterization distortion ≤ threshold Td

found work patch == TRUE
create the work image I(v) by resampling P (v)

Else
decrease the size of P (v)

found cut = FALSE
While found cut == FALSE do

patch matching in I(v)
patch fitting in P (v) using graphcut
If the optimal seam cost is below threshold Tc

found cut = TRUE
Else

decrease the size of I(v) and P (v)
get BTF values for vertices of P (v)

Fig. 4. Pseudo-code for texture quilting on the dense mesh.

is the most constrained, i.e., having the largest number of

immediate vertex neighbors that are synthesized.

Work Patch/Image: To compute the next BTF patch Pb, we

start by building a work patch P (v) centered at v. We find

P (v) by a breadth-first traversal starting at v. The number

of levels in the breadth-first traversal is defined as a user-

supplied parameter called the work patch size rw. For a 512×
512 MCGIM Md, a typical working patch size is rw = 32.

Intuitively, we can think of the work patch P (v) as a disk of

radius rw.

From the work patch P (v) we derive the work image I(v)
using a continuous parameterization of P (v) by considering

two cases. The first case is simple. If P (v) lies completely

inside a chart of the MCGIM Md, then I(v) is simply the

corresponding sub-image of the chart image and no parame-

terization or resampling is necessary. The second case is more

complex. If P (v) crosses chart boundaries, we parameterize

P (v) using the least squares conformal mapping (LSCM) [18]

and resample the result to obtain the work image I(v). To

minimize the texture distortion caused by LSCM we monitor

the area distortion by a threshold Td, which is set to 4 in our

current implementation. For resampling, we set the sampling

step to the average edge length of the work patch. If a sampling

point p is located in a triangle with three synthesized vertices,

the BTF value at p is interpolated from these vertices and

the sampling point is marked as synthesized. Otherwise p

is marked as un-synthesized. This way we obtain a partially

synthesized work image I(v).

Patch Matching: Having built the work patch and image, we

can now calculate the next BTF patch Pb using graphcut. For

quilting with graphcut, the main tasks are patch matching

and patch fitting [17]. Patch matching places a candidate

patch (the input sample) over a target area by comparing

the candidate patch and the synthesized pixels in the target

area. Patch fitting applies graphcut to select a piece of the
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Fig. 5. BTF synthesis using a work patch and a work image. (a) Finding a
work patch on the surface. (b) The initial work patch. (c) Work image with
synthesized and un-synthesized pixels. (d) Work patch after fitting a new
texture patch, with the graphcut seam shown in yellow.

candidate patch to be the next synthesized BTF patch Pb. We

perform patch matching in the work image I(v) using the

entire patch matching method proposed in [17]. The sum-of-

squared-differences (SSD) cost for the BTF is normalized with

the area of the overlap region between the input sample and the

work image, and the patch placement with the minimal cost is

selected for patch fitting. The SSD-based search is accelerated

using FFT as in [17].

A technical difference between our patch matching and that

of [17] is that we use both translations and rotations, whereas

they only use translations. The reason for this difference is

that surface quilting involves a vector field. The vector field is

important for orienting anisotropic textures on surfaces and for

BTF rendering, which requires a local frame at each surface

point [26]. We designed a user interface to let the user specify

vectors at a few key faces and then interpolate these vectors

to other faces using radial basis functions [23].

During patch matching, we calculate an average orientation

for the work image using the vector field on the work patch.

The average orientation is then used to align the input BTF

sample S for patch matching. In our system we pre-compute

72 rotated versions of S and select the best for patch matching.

Patch Fitting: After the input sample S is placed over the

work patch I(v) by patch matching, we can easily map S

onto the work patch P (v) using the correspondence between

I(v) and P (v). Now every vertex of P (v) covered by the

mapped and rotated input sample S gets a new BTF value,

and every synthesized vertex of P (v) also has an old BTF

value. Based on these old and new values, we apply graphcut

to select a piece of S by regarding vertices of P (v) as graph

nodes and the edges of P (v) as graph edges. The BTF values

of the selected piece are copied to the vertices of P (v) if the

seam cost is below a prescribed threshold Tc. Note that old

seams from previous graphcut steps can be accounted for the

same way as in [17].

(b) (c) (d)(a)

Fig. 6. Singular value decomposition of a BTF. (a) Two images of the
BTF with different viewing and lighting directions. (b) - (d) The three most
significant eigen pixel appearance functions (PAF; top row) and geometry
maps (bottom row). A 4D PAF is packed into a 2D image, in which each
row corresponds to the varying light direction and each column corresponds
to the varying view direction.

Hierarchical Search: For high-quality results we only accept

a piece selected by graphcut if the seam cost is below the

threshold Tc. If the seam cost exceeds Tc we decrease the

work patch size rw by a constant factor (which is set to 0.8

for examples reported in this paper) and repeat the search. We

decrease rw as many times as needed until rw reaches the

minimum size of 4. We employ the same hierarchical search

strategy to control the area distortion of the LSCM parameter-

ization when we build the work patch. Other researchers (e.g.

[25]) used similar ideas for texture synthesis.

Handling BTF Values: The BTF is a 6D function f(x,v, l),
where x = (x, y) is the texture coordinate. v = (θv, φv) and

l = (θl, φl) are the lighting and viewing directions in spherical

coordinates. For each texel x = (x, y), the BTF value is a

4D function discretized into a high-dimensional vector. This

high dimension requires careful treatment when storing BTFs

and calculating SSD costs for patch matching and fitting. For

efficient storage of various BTFs including rotated copies of

the input sample and the synthesized surface BTFs, we only

store the texture coordinates as in [26]. When necessary the

actual BTF value is retrieved from the input sample using

texture coordinates.

For efficient SSD cost calculation, we factorize the BTF as

a sum of products of 2D and 4D functions using singular value

decomposition (SVD) as in [20].

f(x,v, l) ≈

n
∑

i=1

gi(x)pi(v, l),

where gi(x) is called a geometry map and pi(v, l) is called

an eigen point appearance function (PAF). Fig. 6 shows a

SVD factorization of a 128 × 128 BTF sample (the viewing

and lighting resolution is 12 × 8 × 12 × 8 ). The geometry

maps depend on texture coordinates only, whereas the PAF

is a function of the viewing and lighting directions. [20]

developed an algorithm which synthesizes a surface BTF using

the corresponding geometry maps. We adopt this algorithm for

surface quilting with n = 40 and calculate the SSD costs with

low-dimensional vectors.

For ordinary color textures, we store vertex colors directly

into Md and thus create a texture map (usually of size 512×



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 5

(a)

(b) (c) (d)

Fig. 7. Constructing a constrained quilt. (a) Input texture sample. (b)
Specifying a foreground feature (shown in white) in the input sample. (c)
User-specified foreground region F (shown in white) in the output texture.
(d) A constrained quilt with patch boundaries (cut seams) shown in yellow.

512 or 1024 × 1024). With this texture map, the synthesized

surface texture can be rendered using the standard texture

mapping pipeline.

IV. BTF PAINTING

Suppose that we are given a sample texture S with a

foreground feature over a background pattern. Suppose that the

background pattern has been synthesized onto the target mesh

M . Our BTF painting system lets the user interactively syn-

thesize new foreground features on M by roughly specifying

their shapes and locations. Prior to this synthesis, we assume

that the user has roughly specified the foreground feature in

S.

The key ingredient of the painting system is our graphcut

texture painting algorithm, which minimizes both smoothness

and constraint energy to build a quilt of patches.

A. Graphcut Texture Painting

Fig. 7 shows the construction of a constrained quilt Q. We

assume that the sample texture S has been partitioned into

two parts: the background pattern Sb and foreground feature

Sf . We also assume that the user has specified a foreground

region F of the target mesh M . The constrained quilt Q(F ) is

a quilt consisting of patches of M such that Q(F ) completely

covers F and each patch of Q(F ) is directly texture-mapped

from a patch in the input sample S. The constraint on Q(F )
is that F should be textured only by the foreground feature

Sf .

To construct the constrained quilt Q(F ) using graphcut, we

encode the user-specified constraints as constraint functions.

We define a function m0 on the target mesh M such that

m0(p) = 1 if point p belongs to F and m0(p) = 0 otherwise.

Similarly, for every patch P of the constraint quilt Q(F ) we

define a function mP such that mP (p) = 1 if point p belongs

to the foreground feature and mP (p) = 0 otherwise. With

these functions defined, we introduce constrained graphcut,

which is the core part of graphcut texture painting.

Constrained Graphcut: For simplicity we describe con-

strained graphcut for image textures. Consider two overlapping

constrained patches A and B as shown in Fig. 8 (a). Each pixel

p of patch A has a texture value fA(p) and a constraint value

mA(p). Similarly, each pixel p of patch B has a texture value

fB(p) and a constraint value mB(p). Finally, for every pixel p

cutPatch A Patch B
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3 6 9
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Fig. 8. Graph formulation for the seam finding problem in graphcut texture
painting.

of the overlapping region, we have a user-specified constraint

value m0(p).
Our goal is to assign a patch label σp to every pixel p in

the overlapping region (σp = A or B), so that the region is

divided into two parts by a seam of minimum cost (energy).

The energy we minimize is defined as

E(σ) = Edata(σ) + Esmooth(σ).

In general graphcut problems, the smoothness energy Esmooth

measures the extent to which σ is not smooth, while the

data energy Edata measures the difference between σ and

some known data [3]. For graphcut texture painting, Esmooth

measures how well the patches fit together along their seams,

whereas Edata = Econstraint measures how well the synthe-

sized texture satisfies the user specified constraint m0.

Fitting patches together while minimizing Esmooth along

the seams is done the same way as graphcut texture synthesis

[17]. The energy Esmooth is defined as in [3]

Esmooth(σ) =
∑

p,q

V(p,q)(σp, σq),

where
∑

p,q is the sum over all pairs of adjacent pixels in the

overlapping region. The smoothness function V(p,q)(σp, σq) is

defined as

V(p,q)(σp, σq) = ||fσp
(p) − fσq

(p)|| + ||fσp
(q) − fσq

(q)||,

where fA(p) and fB(p) are pixel p’s texture values for patches

A and B respectively.

For graphcut texture painting, we need to further satisfy the

user-specified constraint m0. This is where graphcut texture

painting differs from graphcut texture synthesis, which uses

Esmooth only. We incorporate the user-specified constraint into

quilting by making use of the energy Edata defined as

Edata(σ) = Econstraint(σ) =
∑

p

Dp(σp),

where
∑

p is the sum over all pixels in the overlapping region.

The function Dp(σp) is defined as

Dp(σp) = ||mσp
(p) − m0(p)||

where mσp
(p) is the constraint value of patch σp at pixel p,

while m0(p) is the user-specified constraint value at pixel p.

We use the optimal swap move approach [3] to minimize

the energy E(σ). Fig. 8 (b) illustrates the graph construction.

The nodes of the graph consist of all pixels in the overlapping

region and two terminals A and B. Each pixel p in the
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Fig. 9. Our painting user interface. Input samples with surface imperfections
are shown on the right-hand side panel.

overlapping region is connected to the terminals A and B by

edges tAp and tBp , respectively. These edges are referred to as

t-links (terminal links). Each pair of the adjacent pixels (p, q)
in the overlapping region is connected by an edge e(p,q) called

an n-link (neighbor link). The weights of the edges are

weight(tAp ) = Dp(A), weight(tBp ) = Dp(B)

weight(e(p,q)) = V(p,q)(A,B)

Applying the min-cut algorithm to the constructed graph

produces the minimum cost cut that separates node A from

node B. As explained in [3], any cut in the graph must include

exactly one t-link for any pixel p. Thus, any cut leaves each

pixel p in the overlapping region with exactly one t-link, which

defines a natural label σp according to the minimum cost cut

C,

σp =

{

A tAp ∈ C

B tBp ∈ C

The approach for handling old seams in graphcut texture

synthesis also works with graphcut texture painting.

Quilting on Surfaces: The surface quilting algorithm de-

scribed in Section III can be adopted for graphcut texture

painting on surfaces with modifications of the patch matching

and fitting steps. For patch matching, we use both the BTF

values and the constraint values (ms and m0 values) to

perform a joint search for optimal patch placement. For patch

fitting, we use constrained graphcut.

B. Painting System

Fig. 9 exhibits a screenshot of our painting system. For user

interactivity we do not render surfaces with the BTF. Instead

we display an ordinary color texture that provides a quick

preview of the actual BTF. The color texture is obtained as

one of the BTF images (usually the one with the front parallel

view and head-on lighting).

Our painting system modifies the user-specified constraint

function m0 to improve the quality of the constrained quilt.

As mentioned, the user specifies the foreground region F on

the target surface and thus defines the constraint m0 such that

(a) (c)(b) (d)

(e) (f) (g)

Fig. 10. Computing the constraint function m0 in our painting system.
(a) Input sample. (b) Specifying a foreground feature in the input sample.
(c) User-specified m0. (d) m0 computed by our painting system. (e) Painting
results using a naive modification of m0. (f) Painting results using m0 shown
in (c). Notice the broken texture patterns in the orange area. (f) Painting results
using m0 shown in (d).

m0 = 1 over F and m0 = 0 elsewhere. Unfortunately, m0

defined this way has an abrupt change along the boundary of F

and this abrupt change often leads to destroyed texture patterns

in nearby areas, as illustrated in Fig. 10 (f). A naive solution to

this problem is to weaken m0 as m0 = λ over F and m0 = 0
elsewhere for some small λ. From the definition of the data

energy Edata, if m0 is set to a small value λ, Edata will play

a less important role in the total objective energy. However,

when λ is small, m0 ceases to be effective and background

elements start to appear in F as shown in Fig. 10 (e). Our

solution is to expand a transition zone from the boundary of F

and interpolate the values of m0 in the transition zone using

linear interpolation as shown in Fig. 10 (d). The width of

the transition zone is a user-adjustable parameter. Fig. 10 (g)

shows a synthesis result with the transition zone.

In addition to synthesizing new foreground features, our sys-

tem also supports verbatim copying of the foreground feature

from the input sample onto the surface. This is a straightfor-

ward extension of the verbatim copying technique for image

textures ([17] called this interactive blending and merging).

A useful feature of our system is that it previews a verbatim

copying operation by directly projecting the foreground feature

onto the surface. Although the projected foreground feature is

not seamlessly merged with the background, the preview still

provides valuable visual feedback. With our system the user

can slide the foreground feature on the surface to find a desired

pasting location since the foreground feature can be mapped

onto the surface extremely quickly using the work patch/image

at the target location.

V. RESULTS

BTF Synthesis: Our synthesis algorithm generates good re-

sults on a wide variety of BTFs, including those that cannot

be handled well by existing pixel-based BTF synthesis algo-

rithms. Fig. 11 provides examples of our synthesis results.

Fig. 12 (a) shows an example of a BTF that cannot be handled



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 7

(a) (b) (c)

Fig. 11. BTF synthesis results for three synthetic BTF samples.

(e)(d)

(c)(b)

(a)

Fig. 12. Comparison of pixel-based BTF synthesis with our synthesis
algorithm. (a) Input sample. (b) and (d) Pixel-based systhesis result. Notice
that mesostructure of the leaves are not well maintained. (c) and (e) Our result.

well with existing techniques. This BTF is measured from

real plastic leaves. Fig. 12 (b) and (c) exhibit the synthesis

results of the pixel-based algorithm proposed by [26] and

our algorithm respectively. Our result faithfully captures the

mesostructures of the original BTF, while the pixel-based

algorithm does not.

BTF synthesis is an off-line process that usually takes about

10 - 20 minutes for a 128×128 input sample (the lighting and

viewing resolution is 12 × 8 × 12 × 8). The timing depends

on the number of charts in the MCGIM dense mesh Md and

the size of Md (512× 512 or 1024× 1024 ). The timings are

measured on a PC with a Xeon 3.0 GHz processor.

BTF Painting: BTF painting (verbatim copying) is an interac-

tive process. With BTF painting we can capture imperfections

of real materials and paint them onto geometry models. Fig. 14

(a) shows a BTF captured from a real knitwear with a small

imperfection. Fig. 14 (b) and (c) exhibit results generated

by BTF synthesis followed by interactive painting. With this

approach, we can generate real-world imperfections that are

difficult to obtain by physically-based simulation techniques.

Note that the foreground synthesis is an off-line process just

like the background BTF synthesis. It depends on the sizes of

the foreground areas specified by users.

Fig. 13 and 15 provide more examples of surface decoration

with BTFs and imperfections. The BTF samples used in these

examples are modelled by an artist and rendered using a

Fig. 13. Tree bark generated with BTF synthesis followed by BTF painting.
The input BTF sample is shown in the lower left.

(a) (b)

(c) (d)

(e) (f)

Fig. 17. Texture atlases for models used in Fig.16.

ray tracer. Acquiring these BTF samples is difficult and time

consuming. With our system, the user only has to generate

small BTF samples and can decorate arbitrarily large objects

using automatic BTF synthesis followed by interactive BTF

painting.

Texture synthesis: Note that our surface quilting algorithm

also works well for ordinary color textures. Fig. 16 provides

synthesis results for some texture samples with highly struc-

tured patterns, using both a pixel-based algorithm [27] and our

algorithm. For these texture samples, the pixel-based algorithm

always causes the texture patterns to break apart while our

surface quilting algorithm can preserve the integrity of texture

patterns very well. Fig. 17 shows the texture atlases for models

used in Fig. 16.

VI. CONCLUSION

We presented a system for decorating surfaces with BTFs.

This system is based on a graphcut algorithm for BTF syn-

thesis on surfaces and a graphcut texture painting algorithm.

Our work on BTF synthesis demonstrates that quilting BTF
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(c)

(a)

(b)

Fig. 14. Decorating surfaces with BTFs measured from real materials. (a) Input BTF sample with imperfections. (b) and (c) Surfaces decorated with BTF
synthesis followed by BTF painting.

Fig. 15. Surfaces decorated with BTF synthesis followed by BTF painting. The input BTF sample is shown in the upper right.

patches with graphcut provides an effective way to maintain

mesostructures, which is not possible with existing techniques.

Our graphcut texture painting algorithm allows us to interac-

tively paint with BTF patches. With BTF painting we can

measure surface imperfections from a real material and paint

them onto geometry models, making graphics models more

interesting and better resemble real-world objects. In future

work, we are interested in improving the speed of our synthesis

algorithm.
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