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Abstract 

In order to render a high quality, versatile 3D talking head, a 

stable, high frame rate AV data acquisition system is con-

structed. It can capture 3D position, surface orientation and 

albedo texture of the talking head video images along with the 

corresponding speech signals. The system consists of a com-

puter controlled LED lighting subsystem; high speed stereo 

cameras; a microphone; and a computer for synchronous re-

cording of multi-stream AV data. The visual image data col-

lected is processed through a binocular photometric stereo 3D 

reconstruction pipeline. The pipeline automatically segments 

out the face; computes the depth map with binocular stereo; 

computes the normal map with photometric stereo; generates 

albedo texture; and finally constructs a high-detailed 3d model 

with depth and normal cues as constraints. By using the data 

collected with the built system, we can capture high quality 

dynamic facial performance, synchronized with the subject’s 

uttered speech.   

 

Index Terms: talking head, binocular photometric stereo, fa-

cial performance capture 

1. Introduction 

A Realistic talking head has a wide range of applications, in-

cluding video games, movie characters, assisted language 

teachers and virtual guides. While cartoon avatars are relative-

ly easier to build, human-like realistic avatars seen in games 

and movies are much harder to build as any unnatural defor-

mations make the resultant output fall into the “uncanny valley” 

of human rejection. Image-based facial animation techniques 

achieve great realism in synthesized videos by combining dif-

ferent facial parts of recorded 2D images [1-5]. However, it is 

challenging to freely change the head pose or to render differ-

ent facial expressions. 2.5D talking head [6] wraps face imag-

es around a smooth geometric model, which can achieve both 

3D-feel and realism to some extent. But when the head moves 

in large angles, the artifacts become obvious due to inaccurate 

facial geometry. To build a real versatile 3D talking head, high 

quality dynamic facial performance capture is the essential 

first step. In this paper, we describe a prototype system for 

high-fidelity 3D talking head recording. We begin by briefly 

reviewing previous studies that relate to our work. 

Marker based capture 

One conventional approach to facial performance capture is to 

track a set of sparse hand-placed markers attached onto a face 

using a single or multiple video cameras [7-10]. This approach 

provides robust tracking of very expressive performances; 

however, it is by nature limited in resolution and laborious in 

putting on markers. Furthermore, the markers need to be digi-

tally removed if a facial texture is required. 

Structured light capture 

Similar to marker-based capture, structured light systems pro-

ject known patterns on a face for densely measuring the shape 

[11] [12]. Acquiring the face color, however, becomes non-

trivial, since uniform illumination must be temporally inter-

leaved with the structured light, which consequently reduces 

the temporal resolution. 

Passive capture 

Beeler et al. [13] [14] show the possibility of reconstructing 

pore-scale facial geometry using a high-resolution multi-view 

dense stereo matching. Because of its necessity of high-

resolution, it is not straightforward to apply it to temporally-

dense capture. In addition, the multi-camera system requires 

careful calibration, and the computational cost of high-quality 

stereo matching is high. 

Photometric stereo 

Instead of directly measuring position or depth, photometric 

stereo estimates surface orientations by measuring the shading 

variations of a surface under different illuminations [15] [16] 

[20]. A 3D shape up to a scale can be obtained via integration 

of the obtained surface normal field. Photometric stereo typi-

cally uses a simple reflectance model, e.g., Lambertian model, 

which makes it computation friendly. Another advantage of 

photometric stereo is that it provides an albedo map for realis-

tic texture rendering [20]. 

Binocular photometric stereo 

Combining advantages from both depth and normal sensors 

has been recently studied [18] [19][27]. The combination ap-

proach achieves high quality 3D reconstruction by fusing the 

coarse base geometry estimated by the depth sensor, and high 

resolution details obtained via by photometric stereo. In addi-

tion, light calibration can be automated by using cues from 

base geometry [17] [21]. 

We follow this direction in designing our system because of 

these advantages. Unlike previous works that are restricted to 

static targets, we address the issues of measuring dynamic tar-

gets by developing a practical running system. The challenges 

are (1) the system requires full control over hardware and 

software to trigger lights and camera shutters in a synchro-

nized manner, (2) data transmission and storage increase dra-

matically in high frame rate capture, and (3) high frame rate 

results in a short exposure time, which may degrade the image 

quality as less photons being captured. Moreover, since the lip 

movement is one of the fastest motion on a face, the camera 

frame rate needs to be high enough to precisely record the 

movement. 

In this paper, we develop a high-fidelity 3D capture system for 

recording dynamic 3D faces based on a binocular photometric 

stereo approach. The system aims at recording facial expres-

sions and articulator movement during speech at a high frame 

rate. Designed for 3D talking head applications, our system 

captures 3D dynamic facial performance, along with synchro-
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nized audio. Because our system computes surface normal and 

albedo textures in addition to depth, we are able to render pho-

to-realistic 3D faces with the recorded data. 

2. Data acquisition 

2.1. Video audio recording system  

The prototype system we build consists of a set of LED lights, 

two high speed cameras, a microphone, and a PC for 

controlling multi-stream synchronization and data storage (see 

Fig. 1). 16 individually controllable LEDs are fixed on a 

rectangular frame that is attached to a 24-inch display monitor. 

The lighting patterns can be controlled at a frame rate of 500> 

[Hz]. On top of the screen, two Point Grey Flea3 cameras are 

horizontally placed as a stereo configuration. 

During recording, an actor sits in front of the screen, making 

expressions or reading text prompted on the screen. The stereo 

cameras capture images at a frame rate of 100fps, while the 

lighting system repeatedly varies the light patterns using four 

pre-defined patterns (see Fig. 2) at the same rate. The cameras 

are configured to operate in a trigger mode to synchronize 

with the lighting, and audio recording is also synchronized 

with each image frame by recording its timestamp. Overall, 

the system is able to record four pairs of images under four 

different lighting conditions every 1/25 seconds together with 

synchronized audio. Since the camera frame rate in our current 

setup is 100 [fps], and we use four pairs of images for a single 

reconstruction, the real frame rate of our data acquisition 

system is 25 [fps]. Since the patterns are switched cyclically in 

a sliding window fashion, we can achieve a virtual frame rate 

of 100 [fps], which is sufficient to capture subtle motion of 

human expression. 

2.2. 3D face reconstruction pipeline 

Figure 3 shows overview of the pipeline. After audio-video 

recording, the captured dynamic sequence is fed to the 3D re-

construction pipeline, where the input is converted to a se-

quence of 3D shape models along with normal maps and albe-

do textures. Our method first automatically segments out the 

target object from its background, computes a depth map using 

binocular stereo, then computes the normal map by photomet-

ric stereo using the previously produced depth map as a cue 

for photometric calibration. Albedo texture is also generated 

after normal map computation. Finally, the 3D model is recon-

structed by fusing the depth and normal. 

3. Binocular photometric stereo: 3D face 

reconstruction pipeline 

3.1. Binocular photometric stereo 

Binocular photometric stereo is a combination of depth esti-

mation by triangulation and normal estimation from shading 

variations. Binocular stereo computes the distance from a 

camera to a scene point by measuring the disparity of the point 

in the two projection positions in the cameras. Photometric 

stereo on the other hand, measures the intensity variations of a 

point under varying lightings and computes the surface normal 

(see Fig. 4). Binocular stereo provides coarse yet reliable 

depth estimates, while photometric stereo gives fine scale de-

tails in the form of surface normal. 

 Using both the coarse base shape estimated by binocular ste-

reo and the high-resolution normal information, a detailed 

shape can then be computed by fusing them. To deal with a 

moving object, i.e., human face and articulators, the same 

mechanism can be applied using a high speed capture. The 

underlying assumption is that when the recording frame rate is 

much faster than the object motion speed, the surface geome-

try at time t is almost the same as     .  Therefore, by build-

ing a high speed recording setup, we are able to utilize a group 

of consecutive frames to reconstruct a 3D geometry at time t. 

3.2. Preprocessing 

Captured images are first resized by a factor of two to reduce 

sensor noise. They are next stereo-rectified so as to simplify a 

2-dimensional correspondence problem to a 1-dimensional 

stereo matching problem. Each image is then converted to a 

gray scale image. The gray scale image is denoted as   
 , refers 

to k-th rectified image captured by camera    .  
Moreover, a binary mask    is computed to segment out the 

target object from the background. General image segmenta-

tion usually requires human interaction and parameter adjust-

ment and suffers from unstable performance under extreme 

illumination variations. In our particular case, we develop a 

simple implementation that utilizes the assumption that the 

target object of a scene has a larger variance in intensity under 

Fig. 4: An illustration of binocular photometric stereo. 

Fig. 2: Left is a recording scene. Right are four adjacent frames cap-

tured by one camera, with their corresponding LED lighting patterns at 

the bottom.  

Fig. 3: Overview of our data acquisition and reconstruction system. 

Fig. 1: A picture of our prototype system. 

 



different illuminations than that of the background. So the bi-

nary mask   
  is computed as 
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where (   ) is the pixel location,   is the mean image of four 

adjacent frames, and   denotes a threshold. We use     in 

all our experiments. Only the largest connected region in   
  is 

retained and holes in this region are filled. The segmentation 

mask is essential to the rest of the pipeline, since it explicitly 

defines the region where we assume the Lambertian reflec-

tance and continuity of the surface.   

3.3. Binocular stereo 

In traditional stereo vision, two cameras, placed horizontally 

from one another are used to obtain two different views of a 

scene, in a manner similar to human binocular vision. By 

comparing these two images, the relative depth information 

can be obtained, in the form of disparities, which are inversely 

proportional to the differences in distance from a camera to 

scene points. Dense stereo matching can be formulated in a  

Markov random field (MRF) framework, where each pixel has 

a set of K labels. These labels represent K candidate disparities, 

which are the top K peaks in the normalized cross correlation 

(NCC) score. This formulation is a simpler version of Camp-

bell et al.’s [22]. The optimization of the energy function as-

signs a label    to each pixel p inside the binary mask   
 .  

 ( )   ∑ (  )  (   ) ∑  (     )
(   ) 

          ( ) 

where q denotes neighboring pixels, and   is a weight parame-

ter which in our experiment is set as      . The cost of a 

labeling   *  +  consists of two terms: a unary potential 

 (  ) which represents photo-consistency, and a pairwise 

term  (     ), which defines smoothness of disparities. 

The images for stereo matching are created using 4 channels. 

Each channel corresponds to a gray image recorded under a 

distinct lighting. Hence unary potential is computed as 4-

dimensional normalized cross correlation (NCC), with a range 

between 0 and 1.  

The pairwise term is formulated as a normalized depth differ-

ence of two adjacent pixels: 

 (     )  
 |           |
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where       denotes the depth of pixel   with disparity   . 

The energy function is optimized using tree-reweighted mes-

sage passing (TRW-S) [23]. In our experiment, the number of 

label K is set as 10, and maximum number of iteration of 

TRW-S optimization is set as 20, since in most cases the result 

converges after 20 iterations. 

Even after optimization, the disparity map we obtain may still 

contain errors. These errors typically form small isolated is-

lands off the correct surface (see the black region on the left 

side of the neck in Fig. 5(b) and (c)). Thus, we can detect and 

filter out these error pixels by applying a smoothing filter. Fil-

tering these outliers are essential to shape reconstruction be-

cause a patch with a large error would create a spike-like arti-

fact in the final result. 

3.4. Photometric stereo 

3.4.1. Uncalibrated photometric stereo 

Basic assumptions of traditional photometric stereo are paral-

lel lighting and the surface reflectance follows Lambert’s law, 

i.e.,    (   ), where   is an observed intensity,   is diffuse 

albedo,      is a unit surface normal, and       is a unit 

illumination direction. Given measurements under Q distinct 

lighting conditions, the image formation model can be written 

in a matrix form using an observation matrix       , 

where P-pixel images are cascaded as column vectors:  

                                                        ( ) 
Each row of   is a vector intensity values of the same pixel 

under different illumination conditions. Each row of pseudo 

normal matrix        is     
 , the scalar product of albedo 

and surface normal at pixel   , and each column of        

refers to a lighting direction. Traditional photometric stereo 

obtains illumination directions   by light calibration, which is 

laborious and needs to be done every time before recording. In 

our case, however, we can perform auto-calibration by making 

a full use of the depth map we obtain from binocular stereo. 

Uncalibrated photometric stereo [26] shows that by factorizing 

  using singular value decomposition (SVD), we can solve for 

illumination directions and normals up to a     linear ambi-

guity. Because of the Lambertian image formation model,   

should be a rank-3 matrix. Thus the best rank-3 approximation 

in the least-squares sense can be obtained as: 

        ̃   ̃ ̃
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where  ̃,  ̃,  ̃,   ̃,  ̃, denotes the best rank-3 approximate of  , 

 ,  ,  ,  , and   is an arbitrary invertible     transfor-

mation matrix. Normal map        is obtained by normal-

izing the pseudo normal map  . Thus the major problem of un-

calibrated photometric stereo is resolving the ambiguity  . 

Suppose we have a rough guess of the normal map    that is 

estimated from the depth map produced by binocular stereo. 

With an assumption of a uniform albedo map, we can approx-

imate the ambiguity   by ( ̃ ̃
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  , where operator   refers 

to Moore-Penrose pseudo inverse. The uniform albedo as-

sumption is practical since facial skin is approximately con-

stant. 

3.4.2. Normal estimation from depth map 

Since the resolution of the depth map estimated by binocular 

stereo is low (see Fig. 5(c)), it is difficult to directly compute 

surface normal by differentiation. Hence depth map    is first 

made differentiable by applying a guided filter [24] using the 

normalized pseudo normal map  ̃ as a guidance image. The 

un-normalized form of surface normal at a pixel location 

(   ) is then computed by: 

  (   )  (
(           ) (           ) 

(           ) (           )

 

)        ( ) 

3.5. Shape reconstruction 

In order to fuse the coarse base shape estimated by binocular 

stereo and the high-resolution normal details of photometric 

stereo, the shape reconstruction problem can be formulated as 

a Poisson equation with both metric depth and normal con-

straints as  
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where   is the final depth map to be solved,   is an identity 

matrix, (        ) is a 3D point location estimated by binoc-

ular stereo, and (        ) forms the three channels of nor-

mal map.  
  

  
 is defined as element-wise division, and operator 

  represents element-wise product. In our experiment,   is set 

to 0.1. The normal constraint is formulated using the second 

order derivatives, which performs well in tolerating noise from 

both normal map and depth map in the reconstruction process.  

The final 3D shape is obtained from the dense point cloud  , 

which is the re-projection of the depth map  , with a domain 

of pixels inside the binary mask   
 :  
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where (     ) is the principal point and   is the focal length of 

the camera. 

4. Experimental results 

4.1. Experiment setup 

We evaluate our system by capturing facial performance se-

quences of multiple volunteers. As described in Section 2.1, 

two stereo cameras are configured as a trigger mode, capturing 

        RGB image sequences, with 4 [ms] shutter time, at 

100 [fps] frame rate. Stereo cameras are calibrated using Cam-

era Calibration Toolbox for Matlab [25]. The reconstruction 

pipeline is majorly implemented in Matlab, and thewhole pro-

cess is fully automatic. 

4.2. Experiment on real-life data 

Volunteers are first asked to perform exaggerated expressions, 

like smiling, pouting, mouth wide-open, etc., as shown in Fig. 

6. Facial details, such as wrinkles and small pimples, are all 

clearly visible on the reconstructed surface. This experiment 

shows that our system faithfully recovers different facial 

shapes and is able to record diverse facial performances. 

The second experiment is for 3D talking face data acquisition. 

Figure 7 shows a sequence of a subject reading a prompted 

text sentence. The first row shows recovered shapes without 

textures for the purpose of showing fine details. The second 

row shows renderings with estimated albedo textures. The re-

sult shows that our system is able to capture rapid articulator 

movement (including lips and teeth) during speaking.  

5. Discussion 

One limitation of our current system is a lack of side and back 

view of the face due to the limitation of camera viewing angles. 

Thus, one possible extension of our system is to add more 

cameras using multi-view photometric stereo. 

By using the data collected with our system, we are in the pro-

cess of constructing a high quality, dynamic 3D talking head 

model, synchronized with speech.  Furthermore, after collect-

ing a sufficient amount of data, statistical talking head based 

on Hidden Markov Models (HMMs) can be trained to render 

high quality 3D talking head for any given text or speech input. 

Fig. 6: 3D reconstructions of different facial expression (upper/lower 

figures wo/w texture). 

Fig. 5: (a) image captured by one camera. (b) disparity map comput-
ed by binocular stereo, in which darker color means larger disparity, 

thus smaller depth. (c) terrace-like surface rendered by projecting 

disparity map into 3D space. Notice those spike-like artifacts which 

are caused by gross errors in disparity map. (d) normal map pro-

duced by photometric stereo. (e)&(f) frontal and right view of the 

final reconstructed 3D face.  

Fig. 7: 3D reconstruction of a speech animation sequence. For a complete animation sequence, see 

http://research.microsoft.com/en-us/projects/hd_talking_head/demo_zx5.avi  

http://research.microsoft.com/en-us/projects/hd_talking_head/demo_zx5.avi
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