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We present a method that extracts groups of fixations and image regions for the purpose of gaze analysis and image under-
standing. Since the attentional relationship between visual entities conveys rich information, automatically determining the

relationship provides us a semantic representation of images. We show that, by jointly clustering human gaze and visual enti-

ties, it is possible to build meaningful and comprehensive metadata that offer an interpretation about how people see images.
To achieve this, we developed a clustering method that uses a joint graph structure between fixation points and over-segmented

image regions to ensure a cross-domain smoothness constraint. We show that the proposed clustering method achieves better

performance in relating attention to visual entities in comparison with standard clustering techniques.
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1. INTRODUCTION

Image understanding plays an important role in various applications, such as image search and re-
trieval, and hence, there has been a strong driving force for developing computer vision algorithms to
derive semantic meanings from natural images. However, despite recent advances in the fields of ob-
ject recognition and image understanding, it remains a difficult task for computers to interpret images
as we see them.

The power of metadata in media understanding has gained a lot of attention with the recent explo-
sive growth in the amount of online data. In real-world scenarios of media understanding, input media
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(a) Original Fixation (b) Heatmap (c) Proposed Method (d) Transition Analysis

Fig. 1. Visualization of gaze data: (a) raw fixation data, (b) heat-map representation, (c) our joint clustering result, and (d)
visualization of transition. The original image is adapted from [Arbeláez et al. 2011].

often has additional metadata such as user annotations and file tags. Since such metadata provides the
context and semantic meaning of the media, it has been widely used for media understanding instead
of directly tackling the difficult task of purely bottom-up image understanding. It is pointed out that,
in various tasks such as recommending movies and tagging images, user-provided metadata plays the
most important role, rather than multimedia content itself [Slaney 2011].

Subramanian et al. recently added a new perspective to the above scenario by discussing the pos-
sibility of using eye movement as metadata [Subramanian et al. 2011]. Human gaze information can
be a unique cue for inferring our visual attention, and hence, it can provide knowledge about even
unconscious visual context, which cannot always be given by literal metadata. They demonstrated the
usage of the saccade data of a gaze for social and affective scene detection. The use of gaze information
is becoming relevant as eye tracking techniques are getting mature [Hansen and Ji 2010], and low-
cost consumer eye tracking devices are becoming more available, such as Mirametrix S21 and Tobii
PC Eye2. As Subramanian et al. discussed, in the near future it will become possible to collect a large
amount of gaze data on media contents, and therefore, establishing a method to utilize gaze data for
image analysis and understanding is an important task.

For image analysis and understanding, it is important to analyze gaze data in relation to visual en-
tities, i.e., image regions that correspond to the shapes of fixation target, and their regions of interest
(ROIs). In contrast to a raw spatial distribution of the observer’s attention often used by a heat-map
representation (Fig. 1 (b)), ROI-based representation (Fig. 1 (c), (d)) conveys richer information about
perceptual context. In the research fields such as experimental psychology and psychophysics, appro-
priateness of the ROI definition highly depends on experimental hypotheses [Holmqvist et al. 2011],
and hence ROIs are manually defined in most cases. However, as discussed above, the demand and
possibility of utilizing large-scale gaze data will further increase, and data mining approaches are ex-
pected to open a new vista on gaze analysis studies. It is accordingly required to explore an automatic
and data-driven way of relating fixation clusters to semantically meaningful visual entities.

1http://mirametrix.com/products/eye-tracker/
2http://www.tobii.com/en/assistive-technology/global/products/hardware/pceye/

ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.



Graph-based Joint Clustering of Fixations and Visual Entities • 1:3

There are several technical challenges to achieving this goal. First, gaze locations recorded by eye
trackers inevitably contain uncertainty due to both system errors and human eye jittering. Even com-
mercial gaze trackers are reported to have errors of about 1.0 degree, and micro-saccades always occur
around 2.0 degrees of the central visual field during fixations [Engbert 2006]. As a result, it becomes a
non-trivial task to determine the exact image part that a person is looking at from a fixation location
on the image. Second, automatic detection and grouping of visual entities in natural images (or generic
object detection) has yet to be matured, partly due to ambiguous definition of visual entities. The ambi-
guity of grouping is also a fundamental issue in gaze analysis tasks as well, and this is another reason
why manual fixation clustering and ROI definition are prefered [Holmqvist et al. 2011].

These two tasks are mutually related – clustering fixations and defining their corresponding visual
entities. If there is a fixation cluster among multiple observers, it is likely to be associated with a
visual entity – and vice versa. If relevant visual entities are defined over the image, the task of fixation
clustering can benefit from this information. In [Subramanian et al. 2011], visual entities and their
ROIs are first defined by object-specific detectors, and these ROIs are used for disambiguating the
scale of the mean-shift clustering [Santella and DeCarlo 2004].

If the fixations are first clustered, the clusters help image segmentation/ROI definition tasks. Cal-
dara and Miellet [Caldara and Miellet 2011] proposed a method to automatically define ROIs by ana-
lyzing the statistics of multiple fixation maps. Furthermore, Mishra et al. [Mishra et al. 2009] proposed
a method that uses a single fixation point as a seed for graph-cut based image segmentation, and Sub-
ramanian et al. [Subramanian et al. 2010] extended their approach by using a cluster of multiple
fixation points to achieve more stable segmentation results. Besides these gaze-focused studies, in-
teractive image segmentation techniques have been widely studied in recent years [Boykov and Jolly
2001; Rother et al. 2004]. However, such methods often assume noise-free seed information that is
manually provided by human annotators and cannot use noisy gaze information directly. Recently,
Maji et al. [Maji et al. 2011] proposed a generic method that can incorporate such noisy and unreliable
seed information by constraining the solution of a normalized cut to have correlation with the seed
information. However, all these methods still cannot deal with the case of multiple objects where the
gaze clusters are scattered, and the seeds have to be clustered into objects in advance.

We tackle the above chicken-and-egg problem by jointly clustering fixations and visual entities. Fol-
lowing the above discussion, we assume the structural similarity between fixation clusters and visual
entities. In other words, we assume that the clustering result should form groups that have the similar
structure in both fixation and image domains. Our method defines a graph structure that uses both
fixation points and over-segmented image regions as graph nodes, and it uses the graph to exploit
spatial correlation between fixation clusters and visual entities. The clustering task is accomplished
through an iterative labeling process on the graph nodes through energy minimization. By considering
the relationship between fixations and image regions, our joint approach produces a more comprehen-
sive clustering than does independent clustering. In addition, unlike previous methods, our method
can automatically determine the optimal number of clusters that are associated with groups of both
fixations and visual entities. In this manner, our method (Fig. 1 (c)) tries to extract fixation clusters
and corresponding visual entities in a fully unsupervised manner. By clustering fixations and relating
them to visual entities, it becomes possible to analyze transitions among visual entities (Fig. 1 (d)) that
are closely related to the semantic and perceptual context.

2. PROPOSED METHOD

In this section, the proposed method for joint clustering of fixations and visual entities is described.
In our work, we assume that a fixation cluster forms a bivariate normal distribution in the image co-
ordinates following the report [Nuthmann and Henderson 2010], which says fixation locations tend to
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Edge between fixations
Edge between image regions
Edge between fixation 
and image region

Image Boundary map
and image regionsFixation

Fig. 2. Example of the graph structure computed by our method. The input to our method are a target image, I, and fixations,
F = {fn}. Over-segmented image regions R = {rm} associated with a boundary strength map, B, are computed from I, and
our method uses both fixations F and over-segmented image regions R to form graph nodes. The original image is adapted from
[Arbeláez et al. 2011].

make a normal distribution around the center of the object of interest. With this assumption, we cast
the clustering problem as estimating the parameters of the normal distributions and finding the mem-
bers (fixation points and image regions) of the clusters. To achieve the joint clustering, our method uses
a joint graph structure defined over fixations and image regions and derives a solution via iterative
energy minimization. At the heart of our joint clustering approach, connectivity of the fixations and
image regions is defined over the graph in a unified manner, instead of ensuring the domain-specific
connectivity (or smoothness) in fixation and image domains independently.

As depicted in Fig. 2, the input to our method is a target image I and N fixation locations {gn}
recorded from multiple people. From the target image I, M over-segmented image regions R = {rm}
associated with a boundary strength map, B, is computed [Arbeláez et al. 2011]. Each of the over-
segmented regions rm corresponds to a set of pixels in the target image I that are in the same segment
divided by the boundary map B. A higher intensity in the boundary strength map B indicates a
stronger object boundary. To deal with the noise in recorded gaze data, a set of fixations F = {fn} is
represented by normal distributions around recorded fixation locations {gn}. That is to say, fixation
fn corresponds to a normal distribution with mean gn and variance σ2

f , which is set to a value corre-
sponding to the expected system noise, i.e., 1.0 degree in our setting. For notational consistency with
{rm}, we use {fn} to indicate a finite set of pixel locations in the image coordinates generated from
the normal distribution. Our method uses both fixations F and over-segmented image regions R to
form graph nodes. In what follows, we give more detailed definitions of the graph and joint clustering
method for achieving our goal.
ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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2.1 Graph Structure

Let us define two subsets of graph nodes, VF and VR, where N nodes in VF correspond to fixations in
F , and M nodes in VR correspond to image regions in R. In our method, a weighted graph, G = (V, E),
is defined for the joint set of nodes V = VF ∪ VR. For graph edges E , three types of edges are defined
depending on the combination of nodes that are linked by the edge, i.e., fixation-fixation edges, im-
age region-image region edges, and fixation-image region edges. We describe how edge weights w are
defined over nodes in the following.
Fixation-fixation edge.

To define edges between fixation nodes i and j (i, j ∈ VF ), we use a Delaunay triangulation [De Berg
et al. 2008] for the fixation locations. The triangulation is computed for the set of fixation locations
{gn} in the image coordinates, and an edge is defined between i- and j-th nodes if fixation nodes i and
j are connected by the triangulation. The associated weight wij is defined so that it takes higher values
as the two nodes are geometrically closer. A Gaussian function of the distance between node locations
gi and gj is chosen as the weight function:

wij = ωa exp
(
−κ||gi − gj ||2

)
, (1)

where κ is a parameter of the Gaussian function.
Image region-image region edge. For edges between image region nodes i, j ∈ VR, an edge is defined
between the nodes i and j if ri and rj are adjacent in the boundary map B. As used in [Arbeláez et al.
2011], its weight wij is defined as a sigmoid function of the boundary strength. In our case, the weight
is inversely correlated with the boundary strength as

wij = ωb
1

1 + exp
(
α(b̄− β)

) , (2)

where b̄ indicates an average intensity of the boundary map B over the border between ri and rj . α
and β are parameters of the sigmoid function.
Fixation-image region edge. If i ∈ VF and j ∈ VR, a weight between the fixation node i and the
image region node j is defined as an integral of the gaze distribution fi over the image region ri. In
other words, the more completely the fixation distribution is contained in the image region, the more
strongly the fixation node i is connected to the image region node j. As defined above, each fi represents
a normal distribution with mean gi and variance σ2

f , and hence, the integral can be computed as

wij = ωc
∑
p∈rj

1√
2πσf

exp

(
−||p− gi||

2

2σ2
f

)
, (3)

where p denotes the pixel locations of the image region rj in the image coordinates.
The defined edge weights wij are used for ensuring the connectivity of nodes. The higher weight wij

has a greater cost in assigning different cluster labels to nodes i and j. Since the small weights do not
contribute to the clustering task, edges with small weights are pruned by using a predefined threshold.
In the above definitions of edge weights, ωa, ωb, and ωc are used for controlling the relative strength of
their contributions. If ωa is set to a large value, for example, it requires a high cost to assign labels that
are different from adjacent nodes, and therefore smoothness in the fixation domain is emphasized.

2.2 Objective Function

Now, we describe the objective function of the joint clustering. On the basis of the graph G defined in
the previous subsection, the goal is to assign an optimal cluster label li ∈ L to each node i ∈ V. Labels
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L correspond to a finite set of a cluster hypothesis. As described earlier, each cluster hypothesis is
modeled as a bivariate normal distribution, N (µli ,Σli). Hence, each cluster label li is associated with
its cluster parameters: mean µli and covariance matrix Σli .

The optimal labeling should maximize not only the suitability of the cluster hypotheses for fixation
and image nodes but also smoothness over the graph G. The objective energy function E(l) for the joint
labeling l is defined as

E(l) =
∑
i∈V

Di(li) +
∑

(i,j)∈E

Vij(li, lj) +
∑
l∗∈L

hlδl∗(l). (4)

The first term in Eq. (4) indicates the data cost, which evaluates the appropriateness of assigning
the label li to the node i. Di is defined as

Di(li) =

{∑
p∈fi pli(p) if i ∈ VF∑
p∈ri pli(p) if i ∈ VR

, (5)

where

pli(p) = − log

(
1

2π
√
|Σli |

exp

(
−1

2
(p− µli)TΣ−1li (p− µli)

))
(6)

is a log probability density function of the bivariate normal distribution corresponding to the cluster
label li.

The second term of Eq. (4) indicates the smoothness cost, and Vij is defined according to the edge
weights as

Vij(li, lj) =

{
wij if li 6= lj
0 otherwise , (7)

and the third term in Eq. (4) indicates the label cost that penalizes the total number of assigned unique
labels:

δl∗(l) =

{
1 ∃i : li = l∗

0 otherwise , (8)

and hl is a constant value.
The objective function Eq. (4) can be efficiently minimized through an iterative energy optimization

by using an α-expansion algorithm [Delong et al. 2012], and it yields optimal clustering of both fixation
and image nodes.

3. IMPLEMENTATION DETAILS

In this section, we briefly give details on the above process: extraction of over-segmented image regions
R and energy minimization of Eq. (4).

3.1 Image Segmentation

To extract a boundary strength map, B, and image regions, R, from the input image I, we use a gPb
contour detection algorithm and oriented watershed transform [Arbeláez et al. 2011]. The contour map
gPb is first computed from I by using a GPU-accelerated gPb algorithm [Catanzaro et al. 2009]. Their
method is an approximation of the original gPb algorithm [Maire et al. 2008] that consists of local and
global contour detectors. The local contour is detected on the basis of the oriented gradient strength. A
multi-scale oriented signal, mPb(θ), at the angle θ is computed as a linear combination of the oriented
gradient across different cues (brightness, color, and texture) and image scales. To enhance the global
ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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(d)(a) (b) (c)

Fig. 3. Boundary strength detection and image segmentation: (a) oriented contour maps gPb(θ), (b) contour map gPb, (c) over-
segmented image regions R, and (d) boundary strength map B. The original image is adapted from [Arbeláez et al. 2011].

structure of the local contour, the image region is then segmented into a few regions on the basis of the
local contour map mPb, where mPb(x, y) = maxθmPb(x, y, θ). In a similar manner to the normalized
cuts-based image segmentation [Shi and Malik 2000], a pixel affinity matrix is defined as the maximum
response of mPb along the line between two pixels, and segmented regions are computed via spectral
clustering technique by using the affinity matrix. The global component sPb(θ) of the gPb algorithm is
computed as the contours of the eigen-images, i.e., solutions of the spectral clustering, with directional
Gaussian derivative filters at angle θ. gPb(θ) (Fig. 3 (a)) is defined as a combination of the local and
global components mPb(θ) and sPb(θ). The higher intensity in Fig. 3 (a) indicates a higher contour
strength. As in the original implementation, gPb(θ) is computed in eight different orientations.

In the oriented watershed transform, the maximum contour strength gPb = maxθ gPb(θ) (Fig. 3 (b))
is first used for dividing I into over-segmented image regions R (Fig. 3 (c)) by using the standard
watershed transform algorithm [Meyer 1994]. By treating a grayscale image as a topographical map,
the catchment basins of local minima and their watershed lines are computed. Then, the boundary
strength mapB (Fig. 3 (d)) is defined in accordance with the orientation of the watershed lines. Water-
shed lines between image regions are approximated as straight lines, and their line orientations are
quantized into eight orientations as gPb(θ). Finally, B is defined by assigning the value of gPb(θ) of
the corresponding orientation θ to watershed lines.

3.2 Energy minimization

The objective function in Eq. (4) is defined on the discrete labeling l; however, in our case, each cluster
label is associated with parameters µ and Σ, which are in a continuous space. Hence, as discussed
by Delong et al. [Delong et al. 2012], it is necessary to iteratively update both labeling l and cluster
parameters as follows.

Algorithm 1 summarizes our iterative clustering method. The initial set of cluster hypotheses L0 is
built so that each fixation fn constructs an independent cluster. For each node i ∈ VF , a unique label,
li, is assigned with parameters µli = gi and Σli =

[
σ2
f 0

0 σ2
f

]
. In addition, a special background label φ

ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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ALGORITHM 1: Iterative Clustering
1: Initialize cluster hypotheses L0

2: repeat
3: Compute optimal labeling l w.r.t. Lt by minimizing Eq. (4) by using the α-expansion algorithm
4: Re-estimate cluster parameters µ and Σ to obtain Lt+1

5: until Convergence

with a constant data cost,

Di(φ) =

{
∞ if i ∈ VF
ε if i ∈ VR

, (9)

which allows only image regions to take a small constant value ε, is assigned to nodes i ∈ VR.
Given a set of discrete labels, the optimal labeling l can be computed by minimizing Eq. (4) by

using the modified α-expansion algorithm [Delong et al. 2012]. Then, the parameters of each cluster
hypothesis are updated. Since cluster parameters only affect the data cost Di, Eq. (4) can be further
minimized by setting µli and Σli as the mean and the covariance of the associated points. In this
manner, Eq. (4) is minimized via iteration until convergence. If the same label is assigned to both
fixations and image regions, they belong to the same cluster.

4. EXPERIMENTS

We conducted experiments to evaluate the performance of our method by using the human-annotated
ground truth data of clustering. Ideally, we would like to evaluate the performance directly; however,
since there has been no method that can perform joint clustering equivalent to that of our method,
the accuracy of fixation clustering and image segmentation were separately compared with standard
clustering methods.

To construct a test data set and its ground-truth annotations, we used a BSDS500 data set [Arbeláez
et al. 2011]. Ten novice human subjects were first used for recording fixation locations on images with a
Tobii TX300 Eye Tracker3. Images were displayed on the built-in 23-inch display of the TX300 tracker,
while test subjects fixed their head positions 65 [cm] away from the display. Each image was shown
for 4 seconds in a random order, and a white cross mark on a black background was displayed at the
display center for 2 seconds between images to capture human attention. Gaze data were recorded at
60 [Hz], and they were divided if the gaze acceleration exceeded a threshold of 6 [deg/sec], and the
median location was used for fixation g for each of the divided clusters of gaze data4.

The scaling parameters of the edge weight functions are empirically set at ωa = 90, ωb = 30, ωc = 200,
while the label cost is set at hl = 300. Although the computational cost depends on the number of graph
nodes N and M , it took about 2 seconds per one image for energy optimization using a 3.33-GHz Core
i7 CPU in our current implementation.

Fig. 4 shows some examples from the data set and our clustering results. Each overlaid circle in-
dicates fixation locations, and the colors indicate assigned cluster labels of both fixations and image
regions. If some labels were assigned only to fixations and no corresponding visual entity was found,
these fixation points were considered as outliers and discarded before the visualization. As we can
observe, fixation clusters were robustly found across images, and their corresponding regions of visual
entities were also well segmented out from background regions.

3http://www.tobii.com/
4The dataset is available at http://www.hci.iis.u-tokyo.ac.jp/datasets/
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Fig. 4. Examples of clustering results. Overlaid circles indicate fixation locations, and the colors represent assigned cluster
labels of both fixations and image regions. The original images are adapted from [Arbeláez et al. 2011].

At the same time, five different human subjects were asked to give ground-truth annotations on 100
images chosen from the above test data set. The task for the subjects was to assign unique labels to
sets of fixations and image regions. For each of the 100 images, a fixation-overlaid color image and
a gray-scale contour image were displayed side by side to the subjects as shown in Fig. 5. Since the
BSDS500 data set also contains human annotations of object boundaries, aggregated annotation maps
were used as contour maps instead of the automatically extracted ones. Subjects were asked to use the
mouse cursor to lasso the fixations and to paint the contour image into one cluster at a time. The only
instruction given to the subjects was to make semantically meaningful clusters, and the total number

ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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Fig. 5. Image display for ground-truth annotation. A fixation-overlaid color image and a gray-scale contour image were dis-
played side by side, and the subjects were asked to use the mouse cursor to lasso the fixations and to paint the contour image
into one cluster at a time. The original image is adapted from [Arbeláez et al. 2011].

of clusters was left to their decision. It was also allowed to leave some fixation points unlabeled to
indicate they are outlier points.

For the purpose of comparison, Gaussian mixture model (GMM) was fitted to the fixation data as
a baseline result for fixation clustering [Pedregosa et al. 2011]. Additionally, k-means clustering was
selected from commonly used fixation clustering methods as another baseline method. Image regions
were produced using the ultra-metric contour maps (UCMs) [Arbeláez 2006], i.e., hierarchical repre-
sentation of object boundaries, provided together with the BSDS500 data set. Since the performance
of standard clustering methods highly depend on parameters, the number of clusters k for these base-
line clustering methods was set to the mean number of clusters given by the five test subjects. UCMs
are thresholded at the highest value that produces k image regions. The number k was given to only
baseline methods, but not to the proposed method. Parameters of the proposed method was empirically
defined and fixed through experiments.

Fig. 6 shows typical examples of clustering results compared against human annotation. Although
cluster labels were not always consistent between human annotators (Fig. 6 (b), (c)), it can be seen that
the proposed method (Fig. 6 (d)) achieved a clustering result similar to humans. Given the number of
clusters, GMM fixation clustering (Fig. 6 (e)) could often achieve a clustering result similar to our
method; however, it sometimes created clusters that were not consistent with visual entities. Fully
unsupervised image segmentation based on UCM (Fig. 6 (f)) is fundamentally a difficult task, and
visual entities were not clearly extracted.

The accuracy of the clustering was assessed on the basis of two metrics: Hubert-Arabie adjusted
Rand index [Hubert and Arabie 1985] and V-measure [Rosenberg and Hirschberg 2007]. The adjusted
Rand index (ARI) is a chance-adjusted version of the original Rand measure that is defined to take 0
for a completely random clustering result. Given a set of ground-truth cluster labels Lg and estimated
cluster labels Le of S elements, the original Rand index [Rand 1971] is computed as

RI =
na + nb(

S
2

) , (10)

where na is the number of element pairs that have the same label in both Lg and Le, and nb is the
number of element pairs that have different labels in both Lg and Le. The ARI is defined on the basis
of the above definition by following the general form of chance correction:

ARI =
RI − Expected(RI)

Max(RI)− Expected(RI)
, (11)

ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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(a) Original image (b) Human annotation (c) Human annotation

(d) Proposed method (e) GMM (f) UCM

Fig. 6. Examples of clustering results. From left to right, top to bottom: (a) original input image, (b), (c) human annotations of
two different human subjects, (d) joint clustering results of fixations and image regions with the proposed method, (e) fixation
clustering with GMM, and (f) image segmentation by UCM. The original image is adapted from [Arbeláez et al. 2011].

where Max(RI) and Expected(RI) are the maximum and the expectation of the Rand index given Lg
and Le, respectively.

While the ARI is commonly used for evaluating clustering accuracy, one of the biggest drawbacks is
that it lacks intuitiveness, and ARI scores cannot be compared qualitatively. For that reason, we addi-
tionally used the V-measure, which is defined as a harmonic mean of homogeneity h and completeness
c for the evaluation:

Vβ = (1 + β)
hc

βh+ c
, (12)

where the weight of homogeneity β is set to 1 in our case. Homogeneity h and completeness c are
defined in an information-theoretic manner as

h = 1− H(Lg|Le)
H(Lg)

and c = 1− H(Le|Lg)
H(Le)

. (13)

H(Lg) is the entropy of the ground-truth cluster labels Lg, and H(Lg|Le) is the conditional entropy
of Lg given Le. Homogeneity h becomes higher if the estimated labels contain only elements that are
assigned to the same cluster in the ground-truth labeling. Completeness c is symmetrically defined,
and it takes a higher value if the estimated labels contain all elements belonging to the same cluster
in the ground-truth labeling.

Table I and Fig. 7 summarize the mean scores of 5 subjects ×100 images for the ARI and V-measure.
In Fig. 7, the mean scores for homogeneity and completeness are additionally shown. Image segmen-
tation is still a difficult task even with the number of clusters given. The proposed method achieved
significantly better scores in the ARI (paired t-test: t(499) = 14.34, p < 0.01, effect size r = 0.54) and
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Table I. Comparison of ARI and V-measure scores (mean ± standard deviation)
between baseline and proposed methods

Fixations Image Regions
GMM k-means Proposed UCM Proposed

ARI 0.42± 0.28 0.45± 0.30 0.48 ± 0.30 0.63± 0.14 0.74 ± 0.13
V-measure 0.50± 0.26 0.51± 0.29 0.54 ± 0.28 0.26± 0.19 0.39 ± 0.13
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Fig. 7. Comparison of clustering accuracies. Each bar indicates mean score for ARI and V-measure (homogeneity and com-
pleteness are additionally shown). The light bars correspond to baseline methods, and the dark bars correspond to the proposed
method. The error bars indicate standard errors.

V-measure (paired t-test: t(499) = 12.50, p < 0.01, r = 0.49). In terms of fixation clustering, even simple
clustering methods like GMM fitting and k-means can have a good chance of achieving an accurate
result by specifying the number of clusters. However, it can be seen that the proposed method achieved
higher scores than did the baseline methods despite the fact that the true number of clusters was not
provided in our method. Although their effect sizes are not significantly large, our proposed method
achieved better score in both ARI (paired t-test: GMM, t(499) = 5.24, p < 0.01, r = 0.23 and k-means,
t(499) = 3.12, p < 0.01, r = 0.14) and V-measure (paired t-test: GMM, t(499) = 4.60, p < 0.01, r = 0.20
and k-means, t(499) = 2.86, p < 0.01, r = 0.13).

4.1 Transition Visualization

As discussed earlier, joint clustering of fixations and visual entities enables us to further analyze
transition statistics between visual entities. In this section, we show some examples of transition visu-
alization that can be subsequently achieved with the proposed method. In the following figures, gaze
data and images are taken from [Judd et al. 2009].

While there have been several methods for analyzing transitions [Holmqvist et al. 2011], we em-
ployed Subramanian et al.’s formulation [Subramanian et al. 2010]. They proposed using saccade like-
lihood P (lj |li) from li to lj to analyze transition statistics:

P (lj |li) =
ns(li, lj)

nf (li)
, (14)

where ns(li, lj) is the number of saccades from li to lj , and nf (li) is the number of fixations in li. In the
following examples, arrowed lines connecting clusters indicate saccade likelihoods. The value P (lj |li)
ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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Fig. 8. Examples of transitions between interacting objects. The original images are adapted from [Judd et al. 2009].

Fig. 9. Examples of transitions between face and hand-held object. The original images are adapted from [Judd et al. 2009].

is encoded by using a Jet color-map from blue (P = 0.0) to red (P = 1.0); however, φ lower than a
threshold (φ < 0.25) are discarded in the following figures for clearer presentation.

As reported in [Subramanian et al. 2010], frequent transitions can often be observed between in-
teracting or semantically related objects, as shown in Fig. 8. Not only between interacting persons,
semantic relationships with animals or non-living objects can cause gaze transitions. In the images

ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.



1:14 • Y. Sugano, Y. Matsushita and Y. Sato

Fig. 10. Examples of transitions on large sign-boards. The original images are adapted from [Judd et al. 2009].

Fig. 11. Examples of transitions between head and body. The original images are adapted from [Judd et al. 2009].

shown in Fig. 9, frequent transitions happened between the face and the object the person held. These
examples show another interesting case of transitions that indicates a semantic relationship of the
image contents.

In particular, when the object of interest is large in the image, there tend to be several fixation
clusters within the object. Another typical category of frequent transitions is the ones between such
ACM Transactions on Applied Perception, Vol. 10, No. 2, Article 1, Publication date: May 2013.
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intra-object clusters. Fig. 10 clearly demonstrates intra-object transitions on sign boards, and transi-
tions between head and body as shown in Fig. 11 are also a commonly observed case.

As demonstrated in these examples, the proposed method can provide a way to analyze transition
statistics in a fully bottom-up manner without depending on predefined ROIs. This will enable easier
handling of large scale datasets, leading to further understanding on how eye movements can con-
tribute to image understanding tasks.

5. SUMMARY

In this work, we proposed a novel graph-based joint clustering method for fixations and visual entities.
On the basis of the observation that there is correspondence between fixations and image clusters, a
weighted graph was built to ensure global smoothness jointly on fixations and image regions. Joint
clustering is done through an iterative energy optimization procedure over a graph, and this leads to
more robust and accurate results than does separate clustering.

The proposed method was shown to be able to achieve a higher clustering accuracy than do standard
separate clustering methods. It can robustly discover the structure of attention on a large set of im-
ages and fixations, and it will open a new way to perform web-scale multimedia analysis, as claimed
in [Subramanian et al. 2011]. Our future work includes its applications on scene analysis and image
organization tasks.
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