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Abstract
NELCOME

albulow I
This paper presents a method for recovering shape and CVII;R 2016 W@éj
normal of a transparent object from a single viewpoint using \ Modulated light :

a Time-of-Flight (ToF) camera. Our method is built upon Background Measured
the fact that the speed of light varies with the refractive in-

dex of the medium and therefore the depth measurement of  y g« COvue
a transparent object with a ToF camera may be distorted. Tro-adubove AWQVAVAVA@A
We show that, from this ToF distortion, the refractive light %30‘6
path can be uniquely determined by estimating a single pa- T
rameter. We estimate this parameter by introducing a sur-
face normal consistency between the one determined by a

light path candidate and the other computed from the corre-

sponding shape. The proposed method is evaluated by botfigure 1: Two distortions caused by transparent objects. ()
simulation and real-world experiments and shows faithful Background texture is geometrically distorted by refraction.
transparent shape recovery. (b) Measured depth is distorted by slower light speed in the

medium.
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1. Introduction

transparent object.

Transparent shape reconstruction is important for scien-
b P P Our method records two ToF measurements of a trans-

ti ¢ imaging and applications in industrial manufacturing. . : X : .
It has been a dif cult problem in computer vision because parent object from a single V'eWPO'”F but _by moving the
the appearance of a transparent object can only be indirectly ackground referer)ce .surface which is cahb_rateq. Assum-
observed by the distortion of background textures as illus- ing that the refracuv_e |nd.ex of the target Obje(.:t IS _known
trated in Fig.la Several methods that uses the observationsand the ToF camera is calibrated, the shape estimation prob-

of thegeometric distortiorhave been proposed, yet it is still lem can.be viewed as the pr.oble'm of searching the light
an active research subject. path, which correspond to estimating front and back refrac-

. . , tion points and its surface normal. We show that, using the
Recently, a Time-of-Flight (ToF) camera, which mea- : . : : .
. . . ; . ToF distortion, the light path has a simple expression that
sures distance by correlation of its modulated light, is

becoming a commodity device. When a scene contain-+> governed by a single parameter. We develop a method

ing a transparent object is recorded by a ToF camera, thefor estimating this parameter usingsarface normal con-

: ._sistency that represents a consistency between the surface
ToF measurement also becomes distorted because the ligh . :
o . . normal computed from the light path candidate and that ob-

slows down inside the transparent object due to its refrac-__. .
L . R . S tained from the corresponding shape.
tive index as illustrated in Fid.b. The distortion is different .

o . . . The proposed method estimates both front and back sur-
than the geometric distortion on the image coordinates, but

. . S : faces in a single viewpoint approach. Unlike previous sin-
still conveying rich information about the shape of trans- le viewpoint approaches that are restricted to a scene with
parent object. We call this distortionTame-of-Flight dis- 9 P bp

tortion' in this paper and use it for recovering the shape of 2 single refraction, or requiring a number of light sources
pap g P to illuminate the scene, the proposed method is able to re-

IThis is not ordinary depth distortions that are due to calibration or COVEr @ scene with two refr&?-Ction Sur_faces from a single
multi-path effects but the distortion of “time-of- ight.” view point, with two observations obtained by moving the




background reference surface. This new setting is enabled | #view | #ref. | specialized device |

by the use of ToF distortion, which explicitly encodes the [ [17] 3 2 -

altered light speed in the transparent medium and its vol-| [15, 23] 1 many -

ume. Furthermore, we show a simple multi-path mitigation | [27] 1 1 (+angle) light- eld probe

technique using a retrore ective sheet for this setting, which [6] 1 4 liquids

does not require any computational illumination devices,| Ours 1 2 (retrore ective screen

for recovering curved or multi-planar surfaces of transpar-

ent objects. Table 1: Relation to the prior work. Our method recovers
transparent shape from single viewpoint and two reference

2. Related work points without specialized devices.

Early works of recovering the shape of transparent ob-
jects include 7], which recovers a single refraction water

surface by observing the image placed under water. The'Zed devices fo.r recovering transparent Shape'ﬁm[ ]
setting of single refraction scenes has been further studied econstruct a single side of transparent surface object by the

by several researchers. Morris and Kutulakos] [recon- .Crcizsmg of t\c/jvct)hrefetrﬁ nce rays, one dof V\i.hlc.hdls _Ir_’r;]easured
struct the shape of a dynamic wavy surface by observingIn € air and the other Is measured in fiquid. ere are

a reference pattern placed under water from stereo Cam_also other unique methods for recovering transparent sur-

eras. Altermaret al. [1] estimate the position of the tar- faces. lhrkeet al. [9] reconstruct the shape of owing water

get object in the air from a camera placed in water using a.by dyeing water with a uorescent chemical and observ-

stereo image sequence. Tian and NarasimBk&hdimul- ing from multiple video cameras. Met al [13) acquire

taneously estimate the shape of water surface and plana}he refractive index eld based on the transport of intensity

underwater scene from an image sequence by water Sur_equations,which is a theory of phase imaging with coherent

face tracking based on the distortion model using the V\/‘,Jweillumination, using collimated illumination, and reconstruct
equation. Tian and Narasimhat] also remove distortion ~ 5-d refractive volume based on tomography. Miyazaki and

of wavy surface in a data-driven approach and reconstructlketfmh't.[ ]tE rofposte anflnver?e ;t)olanzatlor; r?)y—tr?cmg for
wavy surface by spatially integrating the water distortion. estimating the ront surface ot a transparent object using po-

Wetzsteinet al. [27] reconstruct thin transparent objects by larized re ections. Ereret al [4] use the_rma_l imaging for
assuming thin transparent objects as a single refraction Sur_determlnmg transparent shape by illuminating the target by
face using light- eld probe, which converts the position and laser beam.
angle of the light source into color codes. In contrast to  Tablel summarizes the settings of transparent shape es-
these approaches that assume a single refraction path, odfmation methods, mainly single viewpoint approaches. Our
method focuses on scenes with two refraction paths to esti-method determines the shape of transparent objects from a
mate whole shape. single viewpoint with two reference points. We consider
There are also methods that analyze solid transparenthat a ToF camera is now a commodity device because it is
shapes that exhibit two or more refractions. Kutulakos and available at a similar cost with ordinary RGB cameras.
Steger [.7] show a general theory of tractability of shape re- Similar to our setting, there are works that use a ToF
covery based on refractive paths characterized by the num-camera with scenes including transparent objects. Hstide
ber of viewpoints, reference points, and refraction points. al. [7] recover light propagation sequences of a scene by
They also show reconstruction of a transparent shape fromsweeping the modulation frequency of their custom ToF
three viewpoints, two reference points, and two refraction camera. O'Tooleet al [18] separate light-in- ight im-
points. Their problem setting is similar to ours but our ages into direct re ection, specular inter-re ection, and
method reconstructs from two observations from a single global components such as caustics based on spatial prob-
viewpoint using a ToF camera, with moving the background ing. Kadambiet al. [11] reconstruct time sequential im-
reference surface. There are also some single viewpointages of a scene including transparent objects by altering
approaches for transparent shape reconstruction. MorrisToF measurement using coded light pulses. Gkioulekas
and Kutulakos [5] reconstruct inhomogeneous transpar- al. [5] visualize propagation of light by an optical coher-
ent objects by illuminating an object from various posi- ence tomography scheme using a Michelson interferome-
tions and analyzing the specular re ections. Similarly, Ye- ter. Because their method has pico-second time resolution,
unget al. [23] also propose a reconstruction method based spectral dispersion in a glass slab can be visualized. While
on specular re ection analysis. While effective, these meth- these works visualize light transport of the scene, our goal
ods require a number of light positions for accurate recov- is reconstruct the shape of transparent objects. Similar to
ery. our work, Shim and Leel[] reconstruct the shape of thin
Some other methods take an approach of using specialtranslucentobjects using a single ToF camera. They model



its refractive index , hence the optical length measured by
the ToF camera becomes different than the geometric length
of the light path. The measured depty= can, therefore,

s
V3 be expressed as

t
|
= cameraray v,
Vl

ToF Camera Transparent object

lor =t+ jb fj+s; (1)
wherej j represents the geometric length of the vector. We
call this distortion theTime-of-Flight distortionin this pa-
per, and use it for estimating the shape of transparent objects
as it embeds the thickness of transparent object.

This model is built upon the following two assumptions.

Figure 2: Transparent shape recovery problem. The front
surface poinf is on the camera ray at distanteand the
back surface poirtb is on the ray of 2 reference points at
distances.

Re ection on the transparent object surface is ignored.

Specular re ection is only observed when the surface
the distortion of the depth by two layer (2-sparse) multi- confronts with the ToF camera, which rarely happens
path model, and determined object and background layer's in practice.
depth from multiple observations of different illumination
phase delay. Unlike their method, our method is developed
for recovering shape dfansparenbbjects, which have two
refraction points and considerable thickness, using the vari-
ation of speed of light inside the object and refractive paths.

We assume only a single path of ToF light rays and ig-
nore multi-path interference. In practice, we avoid the
multi-path effect using a retrore ective sheet, which is

explained in an experiment section. Prior methods for
multi-path separation in ToF sensing such a3 [L1]

3. Proposed method can be alternatively used.

, , . 3.2. Baseline method
In our setting, we measure a transparent object using a

known reference board placed behind the object as illus- By examining the equation of the ToF distortion (EQ)(
trated in Fig.2. The target scene is recorded by a ToF cam- analytically,s can be expressed as a functiort af’
era twice by moving the reference board at two distinct lo-

cations behind the obj i i - _ _h@®) h2(t) gi(t),

ject. A single ToF observation con s(t) = : 2)
tains both intensity and depth measurements, and from the g
intensity measurement, we determine two reference pointsyhereg, h, andi are auxiliary variables de ned as
ri;r, 2 R3. From these two reference point observations, 8
the reference ray direction; can be determined. With an 29 =21
assumption that the refractive indexf the transparent ob- h(t) =l t 2(r1 tvy)Tvs 3)
ject is known and that the camera is calibrated therefore the z i) = 2jr, tv1j2 (e 1)2

camera ray direction; is known, our goal is to estimate
the front surface point and back surface poitit at every ~ While this expression eliminates unknown vectorandf,
camera pixel using the ToF depth measurenhgrt. This there still remains one degree of freedom to determine the
problem is equivalent to estimating two varialilends, unique shaps andt. For resolving the ambiguity, we use a
wheret is the distance from the camera to the front surface surface normal consistency described in the following.
point, ands is the distance from the back surface pointto ~ When a hypothesized deptlis assumed, we can obtain
the reference point. Our method estimates these unknowns hypothesized front surface poinand back surface point
t andsfromvy,vs, ry, andlor for determining the shape b as functions of:
of transparent object. We begin with describing the ToF ) = tvg;
distortion model and develop the estimation method. - 4)
b(t) =ry s(t)vs:
3.1. Time-of-Flight distortion model , _ o
Based on this, the refractive ray direction can be ob-

A ToF sensor acquires the scene depth by observing theained from the hypothesized front surface pdirib back
delay of returned light. When a transparent object is placedsurface poinb as
in the scene, a ToF sensor measures the optical length to the
background object instead of the transparent object because Vo(t) = 7_b(t) f(t)_; (5)
light refracts and passes through the transparent object and jb(t) (1))
re ects back from the background. In addition, the light 2please refer to Appendix A in the supplementary material for the

speed slows down inside the transparent object according talerivation.




Since the refractive index is known, the surface normal
np (t) of the front surface point can be obtained from the
refractive path using Snell's law &s

_ Vvo(t) vq
N A ORI
! :
= Nz(t) r(t) (rl S(t)Vg tV]_) Vi
(6)

whereN1(t) = jb(t) f(t)j andN,(t) = j va(t)
are normalization coef cients.

At the same time, we can obtain another surface normal
ng (t) from the hypothesized shape as

Vij

@tvy) @tvi)
— @x @y .
"= G @ %
@x @y

where and @are cross product and partial differentia-

tion operators, respectively. We assume that the neighbors

aroundtv, correspond to those viewed in the camera pixel
coordinates.

If the assumed front depths correct, two normals, (t)
andng (t) should coincide; therefore, the estimation prob-
lem can be casted as an optimization problem as

X
argmin knp:(te)
' ac

nd;c(tc)kg ;

®)

wheret is a vector listing for all pixels, C is a set of all
pixels, t¢ is the hypothesized front depth of pixglnp.c
andny.c are the surface normal computed from the refrac-
tive path and that from hypothesized shape at poxete-
spectively. We call this method lzaseline methgdand in

the next subsection, we introduce additional objectives for
a more stable solution.

3.3. Robust estimation method

The objective function (Eq8)) directly uses the optical
length measured by the ToF sensor (EQ) (vithout con-
sidering uncertainty (or noise) in the measurement. To take
into account observation noise, we introduce a new variable
I for each pixel, which represents the noise-free ToF op-
tical length. There are two objective terms; one of which
is the normal consistency used for the baseline method de
scribed above, and the other is that the denoised signal
should remain close enough to the measured silgpal.

We additionally regularize the denoising part assuming the

smoothness of both front and back surfaces. Hence, the

3please refer to Appendix B in the supplementary material.
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Figure 3: Discontinuity of back surface points. Red and

blue points are well ordered in each group, but generates
discontinuity due to the edge on the front surface as em-
phasized by a black arrow. To take into account of this dis-
continuity, we use a Huber cost function for back surface

smoothness.

overall objective function becomes

£:1 = argmin Na;e(te)ks +
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wherel is a vector listind. for all pixels,j andk are pixel
indices chosen from a set of all neighborhddd k k, is

the Huber penalty functions[*, v1.c is a unit camera ray
vector corresponding to pixed, and Il (¢) is the mea-
sured ToF depth at pixel The rst term ensures the nor-
mal consistency, the second term represents denoising of
measured signdlor , and the third and fourth terms reg-
ularize the denoising process by enforcing smoothness of
front and back surfaces. If the front surface consists of mul-
tiple planes or is curved, continuity of back surface points
could break as illustrated in Fi§. We therefore use a Hu-
ber cost function for the back surface smoothness because
it allows occasional discontinuity (outliers) while retaining
overall smoothness.

3.4. Solution method

The optimization problem of EQ.9] is unfortunately
non-convex and dif cult to directly solve. We therefore take
an alternating minimization approach by splitting the orig-
inal problem into two subproblems; one for estimating
with keepingl xed (t-subproblem), and the other for de-
termining| with givent (I-subproblem). This can be in-

terpreted as alternating estimation of shapsubproblem)

4 The Huber penalty function is dn=l, hybrid norm hence it can be
used as smoothness with discontinuity, and de ned as

xji =2 (xj>)

kxk, =
H x2=(2 )  otherwise

h (xj) ,whereh (x) =



and denoising of measuremehs(ibproblem). Our method ~ 3-d view Height map fromNormal mbagck

@

front back

iteratively updatest and | with initialization of t =

constant , which is chosen manually by setting the approx- " -

imate distance to the object, ah& I , which is a vec- J
torized 1o (C) for all pixels. We now discuss these two .

subproblems in detail. P

t-subproblem By xing |, Eq. @) can be reduced to an

L

| _—
optimization problem of as 0mm 50 mm
X 5 (a) Diamond object
- i . 3-d view Height map Normal map
= . . +
f argltﬂm e Mpic(te f\C) Naje(te) 2 front back front back
c
X
2
2 ktj Vi tkVik k2 ; (20) a \
jk 2N

ﬁ
wheref\C represents the estimatelgfobtained from the pre- p\ ﬂ
vious iteration. This problem can be interpreted as esti- ’
mation of the front surface shape becatise€orresponds
to the depth of front surface. Neglecting the back sur-
face smoothness term is justi ed because of the fact that (b) Torus-like object
the length betweefi(t) andb(t) is almost xed whenf,
is unchanged. Due to the nested normalization terms ad-igure 4: Simulation examples: Diamond and torus-like
shown in Eq. §), it is dif cult to analytically derive its rst ~ objects. The top row shows the ground truth of 3-d view,
and second-order derivatives of the objective function. To Pseudo-colored height map, and normal map of both front
avoid high computational complexity of calculating second and back surfaces. The bottom row shows the reconstruc-
derivatives, we use the L-BFGS methat/] which only tion result. The reconstruction error@s17% and0:26%,
uses approximate Hessians rather than explicitly computingrespectively..
them. Thet-subproblem is again non-convex; therefore,
there is a chance of being trapped by a local minima. As
we will see in Sec4.1, in practice, it yields good estimates hand, for the robust estimation method in S&6, t- and|-
with appropriate initialization. subproblems are repeatedly solved in an alternating manner.

In the implementation, we begin with thesubproblem and

|_Subpr0b|em By Xing t and neg|ecting the front surface iterate until convergence. We Stop the iteration when the

normal consistency, we obtain &roptimization problem  gap between estimates and former estimates for batid
written as are small enough.

A
.

__|
0 mm 50 mm

X 2
f=argmin  klc e (C)k5+

| 4. Experiments

c2C
X

g @bj (e le) (11) In this section, we rst assess the accuracy, robustness,
©@C @z H and convergence of the proposed method using simulation

data, and apply the method to real-world transparent objects
where § = 3= ;. It can be viewed as a problem of de- tg evaluate its effectiveness.

noisingl regularized by the back surface smoothness (the
second term) with a xed front surfac® Although this
problem is not strictly convex, we observed that this prob-

lem is approximately convéxhence the optimal solution We generate simulation data of a scene with a transparent

can be obtained. We again use the L-BFGS method as et that consist of the optical length and two reference

minimizer for|-subproblem. _ _ points by ray tracing using Eql) and Snell's law. To the
The solution method for the baseline method described 55 \we apply the proposed method to estimate front and

in Sec.3.2 corresponds to the-subproblem. On the other 50 syrface points and assess its accuracy by comparing
5please refer to Appendix C in the supplementary material for the con- With the ground'trUth_mOd?L We .U@OO_5 for > and20

vexity of |-subproblem. for § for all target objects in the simulation tests.

4.1. Simulation test
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Figure 5: Assessment result about local minimum depend- Noise level [%]

ing on the initial value. (a) Terminated cost value. (b) Error ) _
of estimated shape compared to the ground-truth. All ini- Figure 7: Reconstruction error of four approaches with re-

tial values between86 mmand209 mmresult in accurate  SPect to varying noise level. The reconstruction error gen-
erally becomes higher with a greater noise level. Errors are

shapes.
suppressed by proper noise handling. The combination of

—_ denoising and alternating optimization yields stable and the

o0 G 25 lowest error among these four approaches.

= @

g 500 g 20

2 300 € 15

o 3 4 250 mmand assess the convergence and accuracy by solv-
o . .

9272 6 801214 S0 2 4 6 8 10 12 14 ing thet-subproblem. FigurBashows the cost value at con-

Iteration number Iteration number

vergence, and Fighb shows the reconstruction error. The
reconstruction error is less thdfo in a wide range of ini-
tial values betwee86 mmand209 mm, which shows the
tolerance of the method against inaccurate initial values.

(a) Cost oft-subproblem (b) Cost ofl-subproblem

Figure 6: Convergence of our alternating minimization. (a)
Cost oft-subproblem. (b) Cost dfsubproblem. They de-
crease over iterations and converge aBté@erations in this

Convergence of alternating optimization We also as-
example.

sess the convergence of the alternating optimization de-
scribed in3.4. In this simulation, we add Gaussian noise
with its standard deviation d¥:5% of optical length to all

the pixels of the depth data. Figuseshows an example of

the cost variations of two subproblems over iterations. The
Qost of both subproblems rapidly decreases at the beginning
of iterations and remains stable affiterations. With our

test, most transparent shapes showed a similar convergence
behavior and we consider that it is safe to say it reaches a
local optimum.

Accuracy We rst assess the effectiveness of the nor-
mal consistency objectivet-6ubproblem) usingl8 types

of transparent shapes generated by simulation. The dat
is noise-free in this experiment, and the solution is derived
by solving thet-subproblem (baseline method with smooth-
ness). The initial value of is set to constant using an
approximate depth to the object, which essentially corre-
sponds to a planar surface located nearby the object. Fig
uredashows the result of a diamond shape scene. The result ) )

is close to the ground truth, whose root mean squared errofRObustness against noise We further assess the effect of
(RMSE) is0:524 mm(0:17 % of the optical length). As an- observation noise by addlng noise to simulated ToF mea-
other example, Figibshows the result of a round torus-like Surements. For comparison, we assess four approaches: (1)
object. The reconstruction accuracy is high in this case asPaseline method with smoothnessstibproblem only), (2)

well with RMSE 0:801 mm (0:26 % error), while there is t-subproblem with den0|s_|ng, (3) glter.natmg optimization
visible artifacts at a few boundary regions. The average er-(S€c.3.4), and (4) alternating optimization with denoising.

ror of all 48target objects i8:45 %, and the result indicates  We use the Non-local Means Denoising for denoising
the effectiveness of the normal consistency. ToF measurements. Figufesummarizes the reconstruction

errors of these four strategies with respect to the noise level.
Without a proper noise handling (approach 1), results are
signi cantly affected by observation noise hence the error
ent initializations to the solution dfsubproblem because increases together with the observation noise level. When
the t-subproblem is non-convex as described in Ské. denoising is applied prior to the optimization (approach 2),
The transparent shape that we use for this test is placedhe error becomes stable regardless of the noise level. With

Effect of initialization We assess the in uence of differ-

at 200 mm from the camera, and its thickness56 mm;
thus, the object spans in the range260 mmand250 mm
We vary the initialization constant fdr from 150 mmto

the alternating optimization method (approach 3), the er-
ror is also suppressed while it shows degradation at higher
noise levels. The highest accuracy is obtained by alternat-
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Figure 8: Experimental setup. IR lens of Kinect v2 is
changed to obtain narrower eld of view. Reference points
are obtained using the LCD panel on a linear stage.

Estimated point clouds and fit model
front back front back front back
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ing optimization with denoising (approach 4). The result
indicates that denoising is effective, that alternating opti- -
mization is also effective in suppressing noise, and that the
combination of these two is effective. For the real-world

experiments in the next subsection, we use the alternating?2
optimization with denoising approach.

rmal height

Pseudo colored height and normal maps

4.2. Real-world experiment Figure 9: Experimental result of simple objects that con-
) sist of two planer surfacedop: Target objects. Front and
For the real-world experiment, we use an off-the-shelf ,,c gyrfaces are single plane, hence no multi-path inter-
ToF camera (Kinect v2) and an LCD panel placed on a fgrences are occurreMiddle: Estimated front points (yel-
linear stage. Three distinct transparent objects are useqow) and back points (cyan) with t model by ICP (semi-
for conducting the experiment. The parameters are set totransparent).Bottom: Estimated height map (upper) and
2 =0:05and § = 10 for all target objects in this experi- o mal map (lower) of front surface (left) and back surface

ment. (right).

Setup Figure8shows our experimental setup. We use Mi- ’ Object ‘ Mean ‘ Std. dev. ‘
crosoft Kinect v2 for a ToF camera, whose lens is changed Cube (parallel surfaced) 0:188 mm | 0:458 mm
to Edmund 35mm IR lens to narrower the eld of view Wedge prism (18.9 | 0:226 mm | 1:137 mm
(FOV). To obtain reference points, we use an LCD panel, Schmidt prism (45) 0:381mm | 1:398 mm

which is mounted on a motorized linear stage (OptoSigma

SGSP26-150) that allows replication of positions in high Taple 2: Quantitative evaluation of reconstruction errors.

precision. The LCD panel re ects the lights from Kinect \we evaluate the mean and standard deviation of the Eu-

with displayed patterns hence the back illumination of the clidean distance between recovered points and the ground

display is turned off. truth CAD model. The estimated points are registered to
the model by ICP algorithm prior to the evaluation.

Calibration and measurements The LCD-camera sys-
tem is calibrated at two LCD locations before measurement. . _
The 3-d position of every LCD's pixels at two depth loca- We can see that estimated ppmt clouds well t the ground—
tions are measured in the form of IR and depth images oftruth 3-d CAD model. To align the ground truth with the
calibrated Kinect. The pixel location of the LCD panel is econstruction, we use the Iterative Closest Point (ICP) [
determined by Gray code pattern projection method.[ algorithm. The quantitative reconstruction errors are sum-
For measurement, we place the target transparent object ifharized in Table2. The mean error in the Euclidean dis-
between the camera and LCD panel. The target object istance is small, and it shows the effectiveness of our method.
measured twice with distinct LCD panel locations. To ob-

tain reference points in the measurement, we again use th‘R/IuIti-path avoidance

L If the target object is curved or has
Gray code pattern projection.

multiple planes, caustics appear on the background surface.
In such a case, there are multiple light paths sharing the
Result We conduct experiments using three transparentsame re ection point on the background; therefore the ob-
objects, which do not produce multi-path interferences. served depth by a ToF camera does not satisfy the model
Figure9 shows target objects and the reconstruction results.of Eq. (1). To avoid this multi-path interference, we use a



front back front

e ee

Target object Height maps Normal maps

Figure 12: Reconstruction of a transparent curved object

Figure 10: Multi-path avoidance using a retrore ective (convex lens)

sheet. Using a retrore ective sheet, two rays (colored yel-

low and red) can be observed separately even when their

re ection point is overlapped. Finally, we recover the shape of a convex lens, which
has curved surfaces. We again use a retrore ective sheet
for avoiding the multi-path effect. Figufe? shows the esti-
mated results. While it became somewhat noisy, the curved
surface that exhibits multi-path refraction rays is recovered.

5. Discussions

We developed a method for transparent shape recovery
using the time-of- ight distortion. One of the issues of our
method for a practical use is that it is currently limited to
low-resolution, because it is bounded by the resolution of

(a) Target object (b) Slice view the ToF image sensor. Another issue is that our method
breaks down when the light path refracts more than twice,

Figure 11: Reconstruction result of a right angle prism. (a) €9, due to total re ections inside the transparent object,
The target object. (b) a slice view of the estimated surface Which could occur at the edge of the object. To avoid this
points and the ground truth. Blue and red points are the Problém, the region near such edges should be treated dif-
result with and without retrore ective sheet, respectively. ferently by developing a suitable technique.

The retrore ective sheet mitigates multi-path interference  1he normal consistency objective appeared)rafd ©)

for more faithful recovery. is de ned as the Euclidean distance of unit normal vectors.
Theoretically, it should be better written by
] Object | Mean [ Std.dev. | X - 2
argmin Np.c(tc) Ng.c(t 1
without retrore ection| 0:745mm | 1:115mm gt pie(te) Nae(te)

2C
with retrore ection 0:448 mm | 0:828 mm ¢

because of its directional nature. We have tested the above
Table 3: Numerical evaluation of right angle prism. The expression; however, the result did not change much while
result with retrore ective sheet is more accurate than that the computational cost increased signi cantly. Therefore,
without it. we decided to keep using the Euclidean distance of normals.
While we assume the neighbors of front surface points
correspond to those viewed in the camera pixel coordinate,
retrore ective sheet placed on the background. The retrore-we cannot use the same assumption for the back surface be-
ective sheet re ects the incident light ray to the incident cause of refractions (depicted in Fig), and a less restric-
direction; hence, multi-path interference can be avoided tive smoothness term is de ned for the back surface using a
even when the reference points are overlapped as showmuber cost function. We consider this design tends to make
in Fig. 10. the front surface smoother than the back surface. This be-
To verify the effectiveness of the multi-path avoidance, havior can be balanced by adjusting weight parametsrs
we use aright angle prism shown in Fig.ameasure itwith ~ Also, our solution is somehow heuristic approach for solv-
and without a retrore ective sheet. Figutébshows a slice  ing non-convex problem hence it is not guaranteed to reach
of the estimated points and the ground truth model. The re-a good estimate for any shapes.
sult without a retrore ective sheet is distorted by multi-path In the future work, we are interested in exploring the
interference while the result with the retrore ective sheet direction of combining a computational illumination ap-
shows faithful recovery of the object. It is also veried proach, such asl.[], for not only mitigating the multi-path
guantitatively by the reconstruction errors of the experiment interference but also explicitly handling the multi-path ef-
summarized in Tablg. fect for transparent shape recovery.
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