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Appearance-based Gaze Estimation using
Visual Saliency

Yusuke Sugano, Yasuyuki Matsushita, and Yoichi Sato

Abstract—We propose a gaze sensing method using visual saliency maps that does not need explicit personal calibration. Our
goal is to create a gaze estimator using only the eye images captured from a person watching a video clip. Our method treats
the saliency maps of the video frames as the probability distributions of the gaze points. We aggregate the saliency maps based
on the similarity in eye images to efficiently identify the gaze points from the saliency maps. We establish a mapping between
the eye images to the gaze points by using Gaussian process regression. In addition, we use a feedback loop from the gaze
estimator to refine the gaze probability maps to improve the accuracy of the gaze estimation. The experimental results show that
the proposed method works well with different people and video clips and achieves a 3.5-degree accuracy, which is sufficient for
estimating a user’s attention on a display.

Index Terms—Gaze estimation, Visual attention, Face and gesture recognition.
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1 INTRODUCTION
Gaze estimation is important for predicting human at-
tention, and therefore can be used to better understand
human activities as well as interactive systems. There is
a wide range of applications for gaze estimation including
market analysis of online content and digital signage, gaze-
driven interactive displays, and many other human-machine
interfaces.

In general, gaze estimation is achieved by analyzing the
appearance of a person’s eyes. There are two categories of
camera-based remote sensing methods: Model-based and
appearance-based. Model-based methods use a geometric
eye model and its associated features. Using specialized
hardware such as multiple synchronized cameras and in-
frared light sources, they extract the geometric features of
an eye to determine the gaze direction. Appearance-based
methods, on the other hand, use the natural appearances of
eyes observed from a commodity camera without requir-
ing any dedicated hardware. Various implementations of
camera-based gaze estimators have been proposed including
commercial products (see [1] for a recent survey).

One of the key challenges in previous gaze estimators is
the need for explicit personal calibration to adapt to individ-
ual users. The users in these existing systems are always re-
quired to actively participate in calibration tasks by fixating
their eyes on explicit reference points. Another problem that
most estimation methods suffer from is calibration drift, and
their calibration accuracy highly depends on the users and
installation settings. An interactive local calibration scheme
with, e.g., user feedback [2], is sometimes required in
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practical application systems to correct personal calibration
errors. In many scenarios, such active personal calibration
is too restrictive as it interrupts natural interactions and
makes unnoticeable gaze estimation impossible. Although
the number of reference points for personal calibration can
be reduced using specialized hardware such as multiple
light sources [3], [4], [5] and stereo cameras [6], it still
requires a user to actively participate in the calibration task.

It is also well known in the class of model-based ap-
proaches that the gaze direction can be approximately esti-
mated as the direction of the optical axis without requiring
personal calibration [7]. However, its offset with the visual
axis, which corresponds to the actual gaze direction, can
be as large as 5 degrees [1], [4], and the accuracy varies
significantly based on the individual. More importantly,
such hardware-based attempts add a strong constraint to
the application setting, and this naturally limits the user
scenarios.

There are previous studies that aim at completely remov-
ing the need for explicit personal calibration processes. Ya-
mazoe et al. use a simple eyeball model for gaze estimation
and perform automatic calibration by fitting the model to
the appearance of a user’s eye while the user is moving
his/her eyes [8]. In Sugano et al.’s method, in a similar
spirit to [2], a user’s natural mouse inputs are used for the
incremental personal calibration of the appearance-based
gaze estimation without any calibration instructions [9].
Both methods use only a monocular camera, however, these
approaches still have some limitations. Yamazoe et al.’s
approach suffers from inaccuracy due to the simplified
eyeball model, and Sugano et al.’s approach can only be
applied to interactive environments with user inputs.

Apart from these gaze estimation studies, computational
models of visual saliency have been studied to estimate
the visual attention on an image, which is computed in
a bottom-up manner. In contrast to gaze estimation ap-
proaches that aim to determine where peoples’ eyes actually
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Fig. 1. Illustration of our method. Our method uses
saliency maps computed from video frames in bottom-
up manner to automatically construct a gaze estimator.

look, visual saliency computes the image region that is
likely to attract human attention. Biologically, a human
tends to gaze at an image region with high saliency, i.e.,
a region containing unique and distinctive visual features
compared to the surrounding regions. After Koch and
Ullman’s original concept [10] of visual saliency, various
bottom-up computational models of visual saliency maps
have been proposed in [11], [12], [13], [14], [15]. Experi-
ments show that there is a correlation between bottom-up
visual saliency and fixation locations [16]. However, the
visual attention mechanism is not yet fully understood. It
is already known that fixation prediction becomes much
more difficult under natural dynamic scenes, in which a
high-level task and knowledge have a stronger influence on
the gaze control [17].

Gaze estimation (top-down) and visual saliency (bottom-
up) models are closely related. Nonetheless, not many
studies exist that bridge these two subjects. Kienzle et
al. [18], [19] propose a method for learning the compu-
tational models of bottom-up visual saliency by using the
gaze estimation data. A visual saliency map is modeled in
their work as a linear combination of the Gaussian radial
basis functions, and their coefficients are learned using a
support vector machine (SVM). Judd et al. [20] and Zhao
and Koch [21] also use this approach with different features
and a larger database. The linear weights of low-level image
features (e.g., color and intensity) and high-level features
(e.g., face detector) are learned via the SVM in [20]. In [21],
the optimal feature weights are learned by solving a non-
negative least squares problem using an active set method.
These approaches learn accurate saliency models using gaze
points. In contrast to these methods, our goal is to create
a gaze estimator from the collection of visual saliency
maps. To our knowledge, this is the first work using visual
saliency as prior information for gaze estimation.

In this paper, we propose a novel gaze sensing method
that uses computational visual saliency, as illustrated in
Fig. 1. Our approach is based on the assumption that
bottom-up visual saliency is correlated with actual gaze
points. By computing the visual saliency maps from a video
and relating them with the associated eye images of a user,
our method automatically learns the mapping from the eye
images to the gaze points. We aggregate the saliency maps
based on the similarity of the eye images to produce reliable
maps, which we call gaze probability maps in this paper, to
handle low prediction accuracy of raw saliency maps. Once
the gaze probability maps are obtained, our method learns

the relationship between the gaze probability maps and
the eye images. In addition, a feedback scheme optimizes
the feature weights used to compute the visual saliency
maps. The feedback loop enables us to further strengthen
the correlation between the gaze probability maps and the
eye images. From one point of view, our method closes
the bottom-up visual saliency and top-down gaze estimates
loop; the visual saliency determines the likely location
of the gaze points, and the gaze points in return refine
the computation of the visual saliency. We demonstrate
our approach through extensive user testing and verify
the effectiveness of the use of visual saliency for gaze
estimation.

Our method takes a set of eye images recorded in
synchronization with any video clip as the input. From
such an input, our method automatically determines the
relationship between the eye images and gaze directions.
In addition, our method does not distinguish between the
test data and training data, i.e., one dataset can be used
for both the calibration and estimation at the same time.
Therefore, when only the gaze estimates for a particular
video clip are needed, a user only needs to watch the
video clip once. Once the relationship is learned, our gaze
estimator can be used in other application scenarios as long
as the configuration between the camera and user remains
unchanged. In this manner, the proposed framework leads
to a gaze estimation technique that exempts the users from
the active personal calibration.

In general, a fundamental trade-off between the accuracy
and a system’s portability exists. Our system aims at
minimizing the hardware and calibration constraints for de-
veloping a fully ambient gaze estimation technique, which
is a key factor for opening up a new way of attentive user
interface [22], [23]. For example, to collect the gaze data
over a film clip on a public display, the film creator may
only have to place a camera to capture the eye images of
the audience. Similarly, movie players on PCs can naturally
obtain gaze data for media understanding without the users’
notice. In addition, the calibrated gaze estimators can be
used for gaze-based interactions. Our method can further
enhance the calibration accuracy during the gaze estimation
process by using the eye images as input. By closing the
loop of calibration and estimation in this manner, this
work aims at enhancing the approach of calibrating gaze
estimators through daily activities [9].

The preliminary version of this work appeared in [24].
A closely related work is recently introduced by Chen and
Ji [25]. They use the idea of using visual saliency maps
for model-based gaze estimation of a person looking at
still pictures. While Chen and Ji’s approach achieves a
higher level of accuracy and allows for free head movement,
their results rely on a model-based setup with a longer
recording time on a single image. In contrast, our system
uses an appearance-based estimation and is built using only
a monocular camera. While it is often discussed that a gaze
prediction from saliency maps is more reliable when using
static photographs than when using video clips, our method
avoids this problem via the aggregation of the saliency
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Fig. 2. Illustration of proposed approach. Our method consists of four steps. The saliency extraction step
computes saliency maps from the input video. The saliency aggregation step combines saliency maps to produce
gaze probability maps. Using the gaze probability maps and associated average eye images, the estimator
construction step learns the mapping from an eye image to a gaze point. A feedback loop is used to optimize the
feature weights to improve the accuracy by using cross validation.

maps, which results in statistically accurate and stable gaze
probability maps.

This paper is organized as follows. In Section 2, we
describe the proposed gaze estimation method that auto-
calibrates from the bottom-up saliency maps. Section 3
describes the feedback loop from the estimated gaze point
to the saliency weight computation. This feedback loop
is intended to bridge the gap between the top-down gaze
point and the bottom-up visual saliency, and improves
gaze estimation accuracy. Finally, we validate the proposed
method by conducting user tests in Section 4. Our results
show that our method can achieve a 3.5-degree of accu-
racy without needing any specialized hardware or explicit
personal calibration processes.

2 GAZE ESTIMATION FROM SALIENCY
MAPS

Our goal is to construct a gaze estimator without an
calibration stage. Our method assumes a fixed head pose
and fixed relative positions among the user’s head, cam-
era, and display. The term calibration indicates obtaining
the mapping function from an eye image to a point on
the display coordinate. The relationship between the eye
images (input) and the gaze points (output) is expressed as
a single regression function in an appearance-based gaze
estimation, and our goal is to estimate the parameters of
the gaze estimation function without using explicit training
data.

The inputs for our system are N video frames
{I1, . . . , IN} and associated feature vectors {e1, . . . , eN}
extracted from the eye images of a person who is watching
a video clip with a fixed head position. The implementation
details of the feature vector e are described in Section 4.1;
but our framework does not depend on specific image
features. For presentation clarity, we denote e simply as
eye image in this paper. In our setting, the eye images and
video frames are synchronized. The i-th eye image ei is
captured at the same time as frame Ii is shown to the

person. Using this dataset {(I1, e1), . . . , (IN , eN )}, a gaze
estimation function from an eye image e∗ to an unknown
gaze point g∗ is built.

Our method consists of four steps: Saliency extraction,
saliency aggregation, estimator construction, and feature
weights optimization, as illustrated in Fig. 2. Once the
saliency maps are computed in the saliency extraction step,
the saliency aggregation step produces gaze probability
maps that have a higher concentration of gaze point es-
timates than the saliency maps. The average eye images
are computed by clustering the eye images, and all the
saliency maps are aggregated according to the eye image
similarities to compute the gaze probability maps. Using the
gaze probability maps and associated average eye images,
the estimator construction step learns the mapping from
an eye image to a gaze point by using a variant of the
Gaussian process regression. Our method further optimizes
the feature weights that are used for the saliency computa-
tion by using the feedback loop. By optimizing the weights
in a cross-validation manner, this fourth step improves the
accuracy of the gaze estimator. The resulting gaze estimator
outputs the gaze points for any eye image of the user. In
the following subsections, we describe the details of the
saliency extraction, aggregation, and estimator construction
steps, and in Section 3 the feature weight optimization.

2.1 Saliency Extraction
This step extracts the visual saliency maps from the input
video frames {I1, . . . , IN}. As shown in Fig. 3, our method
adopts six features to compute the saliency maps: five low-
level features and one high-level feature.

Each frame I is first decomposed into multiple feature
maps F . We use commonly-used feature channels, i.e.,
color, intensity, and orientations as the static features, and
flicker and motion are used as dynamic features in our
method. The intensity channel indicates the grayscale lu-
minance, two color channels are red/green and blue/yellow
differences, and four orientation channels are the responses
from the 2D Gabor filters with orientation at 0◦, 45◦, 90◦,
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Fig. 3. Computation of visual saliency maps. Our method uses six features to compute the saliency maps:
Face detection-based high level saliency, and five low-level features obtained by using a graph-based saliency
computation; color, intensity, orientation, flicker, and motion. s(1) ∼ s(6) show examples of computed saliency
maps.

and 135◦, respectively. The flicker channel indicates an
absolute intensity difference from the previous frame, and
four motion channels use the spatially-shifted differences
between the Gabor responses. The feature maps are com-
puted at three levels of the image pyramid which are 1/2,
1/4, and 1/8 of the original image resolution. As a result,
36 (3 levels × (1 intensity + 2 color + 4 orientation + 1
flicker + 4 motion)) feature maps F are computed.

The saliency maps are then computed from the feature
maps F using a Graph-based Visual Saliency (GBVS) [14].
Computation in the GBVS algorithm is conducted in two
stages: Activation and normalization. Activation maps A
are first computed from the feature maps F to locate the
regions with prominent image features. Greater values are
assigned to the pixels in activation maps A where they have
distinct values compared with their surrounding regions in
the feature maps. In the GBVS algorithm, this computation
is performed in a form of a steady-state analysis of a
Markov chain GA. Each node of GA corresponds to a pixel
position in feature maps F , and a transition probability
Ωa between nodes (i, j) and (p, q) is defined based on a
dissimilarity between the two corresponding pixels in F as

Ωa((i, j), (p, q)) , Ωd|F (i, j)− F (p, q)|, (1)

where Ωd indicates the Gaussian weight evaluating the
Euclidean distance between (i, j) and (p, q). In this way,
the nodes (= pixels) with a higher dissimilarity to their
surroundings have higher transition probabilities. Therefore,
by iteratively computing the equilibrium distribution da (a
raster-scanned vector form of A) of GA that satisfies

Ωada = da, (2)

where Ωa is the transition probability matrix consisting of
Ωa, the salient pixels in F have larger values in A.

Since the resulting activation maps often have many
insignificant peaks, the GBVS algorithm further normalizes
them to suppress the local maxima. Using the computed
activation maps A, a Markov chain GN is defined in a
similar way with a transition probability Ωn as:

Ωn((i, j), (p, q)) , Ωd|A(p, q)|. (3)

By computing the equilibrium distribution of GN as de-
scribed above, the resulting maps are concentrated so that
they have fewer important peaks. These normalized activa-
tion maps are averaged within each channel, and as a result,
five low-level saliency maps s(1), . . . , s(5) are computed.

It is well known that humans tend to fixate on faces,
especially on the eyes, which are highly salient for humans.
With this observation, Cerf et al. [26] proposed a face
channel-based saliency model using a face detector. We fol-
low this approach to produce reliable saliency maps using
the facial features. We use a facial feature detector OKAO
Vision library developed by OMRON Corporation [27]
to obtain facial features. This sixth saliency map s(6) is
modeled as 2-D Gaussian circles with a fixed variance at
the center of two detected eye positions. When the detector
only detects a face but not the eyes, e.g., due to a limited
resolution, the facial saliency is defined at the center of the
facial region.

Finally, our method computes the temporal average of
each saliency map s̄(1)i , . . . , s̄

(6)
i within a temporal window

ns as

s̄
(f)
i =

1

ns + 1

i∑
j=i−ns

s
(f)
j , (4)

where s
(f)
j is the raw saliency map of the f -th

feature computed from the j-th frame, and ns is
the number of frames used for temporal averaging.
This is because humans cannot instantly follow rapid
scene changes, and only the past frames are used for
the smoothing to account for the latency. As a re-
sult, synchronized pairs of saliency maps and eye im-
ages Ds = {(s̄(1)1 , . . . , s̄

(6)
1 , e1), . . . , (s̄

(1)
N , . . . , s̄

(6)
N , eN )}

are produced.

2.2 Saliency Aggregation
Although it is assumed that the saliency maps can predict
gaze points, their accuracy is insufficient for determining
the exact gaze point locations as discussed in previous
studies [17]. In this section, we describe our method to
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compute the probability distribution of the gaze point by
aggregating the computed saliency maps.

The computed saliency maps {s̄(f)} encode the distinc-
tive visual features of video frames. While the saliency
map does not provide the exact gaze point, highly salient
regions in the saliency map are likely to coincide with
the actual gaze point. Suppose we have a set of saliency
maps that statistically have high saliency scores around
the actual gaze point and random saliency scores at other
regions. Since we assume a fixed head position, there is
a one-to-one correspondence between the gaze points and
the eye images; actual gaze points would be almost the
same between visually similar eye images. Therefore, by
aggregating the saliency maps based on the similarity of
the associated eye images, we can assume that the image
region around the actual gaze point has a vivid peak of
saliency compared with other regions. The aggregated map
can be used as the gaze probability map, i.e., the probability
distribution of the gaze point.

The similarity score ws of a pair of eye images ei and
ej is defined as

ws(ei, ej) = exp(−κ2s||ei − ej ||2), (5)

where the factor κs controls the similarity score. The
similarity score ws is higher when the appearances of two
eye images are similar, i.e., the gaze points of the eye
images are close. Since the appearance variation of the eye
images is quite large for different people, the optimal value
of κs in Eq. (5) is highly person-dependent. Therefore, in
this work, the factor κs is indirectly defined via the range of
the values taken by ws. More specifically, κs is optimized
by minimizing an error defined as

κs = argmin
κs

||Ts − det(Ws)||2, (6)

where Ws ∈ RNs×Ns is a similarity weight matrix com-
puted using randomly selected Ns eye images in Ds. Ts is
the target value of the determinant that is empirically de-
fined, e.g., by quantitatively checking a sample dataset. The
factor κs is determined to adapt to the person-dependency
by minimizing Eq. (6) via the gradient descent.

We eliminate the eye images that are not useful for gaze
estimation from the dataset, e.g., eye images of blinking,
prior to the computation of the gaze probability maps. On
the other hand, the eye images recorded during fixation
are useful as training data. To automatically identify such
eye images, we use a fixation measure of an eye image e
defined as

we(ei) = exp(−αeκ2sVar(ei)), (7)

where αe is a weighting factor, and Var(ei) denotes the
variance in the eye images {ei−nf

, . . . , ei+nf
} over a

temporal window 2nf + 1 centered at i,

Var(ei) =

i+nf∑
j=i−nf

||ej − µei ||2, (8)

µei =
1

2nf + 1

i+nf∑
k=i−nf

ek. (9)

Eq. (7) evaluates the stability of the eye regions, and it
is assumed that there are no significant changes in the
lighting conditions during the temporal window. Since the
appearances of the eye images rapidly change during the
fast movement of the eyes, we(ei) becomes small when
ei is captured during eye movement or blinking. A sub-
set Ds′ = {(s̄(1)1 , . . . , s̄

(6)
1 , e1), . . . , (s̄

(1)
N ′ , . . . , s̄

(6)
N ′ , eN ′)}

is created from Ds by removing the eye images where the
we scores are lower than a predefined threshold τf .

Since variation in the gaze points is limited in Ds′ and
there can be many samples that share almost the same gaze
point, the eye images are clustered according to similarity
ws to reduce redundancy and computational cost. Using the
similarity score (Eq. (5)), each eye image ei is sequentially
added to the cluster whose average eye image ē is the most
similar to ei. A new cluster is adaptively created if the
highest similarity among all existing clusters is lower than
a threshold τe. M clusters and their average eye images
{ē1, . . . , ēM} are computed from these computations.

After these steps, a gaze probability map p̄(f)i of each
feature f is computed as

p̄
(f)
i =

∑N ′

j=1 ws(ēi, ej)(s̄
(f)
j − s̄

(f)
all )∑N ′

j=1 ws(ēi, ej)
, (10)

where s̄(f)all is the average of all the maps s̄(f)1 , . . . , s̄
(f)
N ′ in

Ds′ . It is known that a center bias of visual saliency [20],
[21] exists because man-made pictures usually have a
higher saliency at the center of the image. The average
saliency map s̄(f)all is used to eliminate this center bias in
a gaze probability map. Without this, the gaze probability
map tends to have a higher value at the center regardless
of the eye image ēi. The gaze probability map p̄(f)i can
also have negative values. In our case, only the relative
differences matter, and therefore, we used the computed
results by normalizing the values to a fixed range. We again
use the graph-based normalization scheme (Eq. (3)) to the
gaze probability maps p̄(f)i in order to enhance the peaks
in the gaze probability maps.

The final gaze probability map p̄i is computed as a
weighted sum of all the feature-dependent maps p̄(f) as

p̄i =

6∑
f=1

ωf p̄
(f)
i , (11)

where ωf is a weight for f -th feature. p̄i is then
normalized to a fixed range, and we obtain a dataset
Dp = {(p̄1, ē1), . . . , (p̄M , ēM )}. We followed many exist-
ing visual saliency map models and used equal weights at
this step to aggregate feature maps. However, it is often
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Fig. 4. Examples of gaze probability maps p̄ and
corresponding average eye images ē. The overlaid
dots depict the actual gaze points of ē to illustrate the
correspondence between the gaze points and the gaze
probability. The true gaze points are obtained using a
calibration-based gaze estimator.
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Fig. 5. ROC curves of raw saliency maps and gaze
probability maps. The horizontal axis indicates the
false positive rate, i.e., the rate of the pixels above a
threshold. The vertical axis indicates the true positive
rate, i.e., the rate of the frames that have a higher
saliency value than the threshold at the true gaze point.
The thin line (AUC = 0.82) indicates the performance
of the raw saliency maps obtained by the process
described in Section 2.1. The bold line (AUC = 0.93)
indicates the performance of the gaze probability maps
described in Section 2.2.

pointed out that the contribution of each feature is not
uniform, and there is a certain degree of data dependency.
We use a feedback scheme to optimally adjust the weight
parameters to address these issues. The feedback scheme is
discussed in Section 3.

Fig. 4 shows examples of the obtained gaze probability
maps p̄ for six people. The eye images shown at the top-
left of each sub-figure indicate the corresponding average
eye images ē, and the overlaid dots indicate the actual
gaze points of ē. Note that ē is a prototype of the eye
images synthesized through the above process, and the
actual gaze points are unknown. Therefore, we used the
estimates from the appearance-based gaze estimator using
explicit calibration, which is described in Section 4, to
obtain the true gaze points as a reference. Although the
gaze probability maps p̄i are generated without knowing
the actual gaze points, they have a significant correlation
with the actual gaze points.

We compare the gaze probability maps with the original
raw saliency maps to assess the correlation improvement
with the actual gaze points. Fig. 5 shows the correla-
tion improvement using a receiver operating characteristic
(ROC) curve. We sweep the threshold value for the gaze
probability maps and raw saliency maps to obtain the plots,
and assess all the ground truth gaze points that we obtain
through the experiment. The horizontal axis represents the
false positive rate, i.e., the rate of the pixels in a map above
a threshold value. The vertical axis is the true positive rate,
which indicates the rate of frames whose saliency value at
the gaze point is greater than the threshold. The area under
the curve (AUC) of the gaze probability maps is 0.93, and
that of the raw saliency maps is 0.82. This result shows that
the correlation is significantly enhanced by the aggregation
process.

2.3 Estimator Construction

In the previous step, M average eye images {ē1, . . . , ēM}
and corresponding gaze probability maps {p̄1, . . . , p̄M} are
obtained. This section describes our method for creating
a gaze estimator using them as the training dataset. Our
goal is to establish a mapping from the eye image to
gaze points. We develop a method based on Gaussian
process regression that has been successfully applied to
both appearance-based [28] and model-based [29] gaze
estimation to efficiently achieve this task.

With the standard Gaussian process regression frame-
work, an estimator is built to output the probability dis-
tribution P (g∗|e∗,Dg) of an unknown gaze point g∗

from an eye image e∗, given the labeled training data
Dg = {(g1, ē1), . . . , (gM , ēM )}, which consists of the eye
images and corresponding gaze points. In our case, how-
ever, we only know Dp = {(p̄1, ē1), . . . , (p̄M , ēM )} where
the gaze probability map p̄i only provides the probability
distribution of the gaze point gi. Therefore, instead of
directly applying the standard Gaussian process regression,
we work on a marginalized probability where explicit
training labels are not required.

After normalizing the gaze probability maps, we define
the gaze probability distribution P (g|p̄) as

P (g|p̄) =
p̄(g)∑
x

∑
y p̄

, (12)

where p̄(g) indicates the value of p̄ at the gaze point
g, and

∑
x

∑
y p̄ is the overall summation of p̄. In the

above equation, we describe the estimation of a one-
dimensional scalar g to simplify the notation, but two
regressors are independently built for each X- and Y -
direction in the actual implementation. Using Eq. (12),
the target distribution P (g∗|e∗,Dp) can be obtained by
marginalizing over all the possible combinations of M gaze
points D̂g = {ĝ1, . . . , ĝM} as

P (g∗|e∗,Dp) =
∑
D̂g

P (g∗|e∗, D̂g)P (D̂g|Dp), (13)
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where

P (D̂g|Dp) =

M∏
i

P (ĝi|p̄i). (14)

In Eq. (13), g∗ indicates an unknown gaze point associated
with the eye image e∗, and ĝi is a candidate of the gaze
point that corresponds to ēi.

However, the summations of the Eq. (13) are com-
putationally expensive. Various approximation techniques
for the Gaussian process regression [30] can reduce the
computational cost of computing P (g∗|e∗, D̂g), however
they cannot directly approximate Eq. (13) itself. For
these reasons, we solve Eq. (13) using a Monte Carlo
approximation. We randomly produce ng sets of sam-
ples D(l)

g = {(g(l)1 , ē1), . . . , (g
(l)
M , ēM )}ng

l=1 according to the
probability distribution defined by Eq. (12). In particular,
g
(l)
i in the l-th set is generated according to the distribution
P (gi|p̄i) defined by the i-th probability map. It has been
experimentally shown in Fig. 5 that gaze probability maps
have a high correlation with the actual gaze points. From
this observation, we discard the low saliency values from
the gaze probability maps to reduce the number of samples.
We use a threshold τs to set the probability to zero if p̄(x, y)
is lower than the threshold. Using these sets, Eq. (13) can
be approximated as

P (g∗|e∗,Dp) =
1

ng

ng∑
l=1

P (g∗|e∗,D(l)
g ). (15)

Finally, P (g∗|e∗,D(l)
g ) for each l is computed based on the

Gaussian process regression as follows [30].

Gaussian Process Regression.
We assume a noisy observation model for a gaze point

gi = f(ei) + εi, i.e., a gaze point gi is given as a function
of the eye image ei with a noise term εi = N (0, γ2ς2i ).
The data-dependent noise variance γ2ς2i is defined as being
proportional to ς2i , which is an actual variance of the gener-
ated samples {g(1)i , . . . , g

(ng)
i }. It explicitly assigns a higher

noise variance for samples from ambiguous saliency maps
that have several peaks. The function f(ei) is assumed to
be a zero-mean Gaussian with a covariance function k:

k(ei, ej) = α2 exp(−β2||ei − ej ||2), (16)

with hyperparameters α and β. With this assumption,
P (g∗|e∗,D(l)

g ) is derived as a Gaussian distribution
N (µl, σ

2
l ) that has a mean µl and variance σ2

l :

µl = K∗K−1G(l), (17)

and

σ2
l = k(e∗, e∗)−K∗K−1tK∗, (18)

where the matrix K ∈ RM×M is a covariance
matrix where its (i, j)-th element is defined as
Kij = k(ēi, ēj) + γ2ς2i δij . The vector K∗ ∈ R1×M

represents a covariance vector of the input eye
image and average eye images, whose i-th element

is K∗i = k(ēi, e
∗), and Gl ∈ R1×M is a vector of the

gaze points, where its i-th element is G(l)
i = g

(l)
i . As a

result, the distribution P (g∗|e∗,Dp) can be estimated as a
Gaussian distribution N (µ, σ2) with

µ =
1

ng

ng∑
l=1

µl, σ2 =
1

ng

ng∑
l=1

σ2
l = σ2

1 . (19)

The variance σ2 is simply the same as σ2
1 , because σ2

l of
Eq. (18) is actually independent of the index l.

Tuning Hyperparameters.
There are three hyperparameters, α, β, and γ, in the

above formulation, which need to be optimized for each
dataset. We use a cross-validation approach [31] for the
optimization in our method. The optimal parameters can
be estimated by maximizing a leave-one-out log predictive
probability L defined as

L({D(l)
g },θ) =

ng∑
l=1

M∑
i=1

log p(g
(l)
i |{D

(l)
g }−i,θ), (20)

where θ is a set of hyperparameters θ = {α, β, γ}, and
{D(l)

g }−i is a set of generated samples that excludes the
samples with the i-th eye image. The predictive probability
p(g

(l)
i |{D

(l)
g }−i,θ) is defined as a Gaussian function as

log p(g
(l)
i |{D

(l)
g }−i,θ) =

− 1

2
σ2
−i −

1

2

(g
(l)
i − µ−i)2

2σ2
−i

− 1

2
log 2π, (21)

where µ−i and σ2
−i are the estimated mean and variance

using the sample set {D(l)
g }−i.

In our case, however, the actual gaze points of the eye
images in the samples {D(l)

g } also have a center bias for
the same reason discussed in Section 2.2. This results in
fewer samples in the peripheral region, and the errors in
this region become overly small. When Eq. (20) is directly
minimized, the optimization result also tends to be biased
to the center. Therefore, we modify Eq. (20) to remove the
center bias by normalizing the predictive probability as

L =

ng∑
l=1

M∑
i=1

1

n(i,l)
log p(g

(l)
i |{D

(l)
g }−i,θ), (22)

where n(i,l) is the total number of samples that have the
same gaze points as g(l)i . By evaluating the average errors of
each gaze point, Eq. (22) can evaluate the estimation errors
in an unbiased manner on the display coordinates. Using
partial derivatives with respect to the hyperparameters,
Eq. (22) is maximized via a conjugate gradient method.
The readers are referred to [30] for a detailed derivation of
the partial derivatives.

2.4 Gaze Estimation
Once we have matrices K, S, and {G(1), . . . ,G(ng)} in
Eqs. (17) and (18), a gaze point can be estimated by taking
a new eye image e as an input. The estimated distributions
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Error minimization

Gaze

estimator

Fig. 6. Illustration of feature weight optimization. Target
attention maps {a} are generated based on leave-one-
out estimates, and feature weights are optimized by
minimizing a sum of squared residuals between target
maps and sum maps {p̄}.

for each X- and Y-direction, N (µx, σ
2
x) and N (µy, σ

2
y),

are converted to the display coordinates N (µ̂x, σ̂
2
x) and

N (µ̂y, σ̂
2
y) by

µ̂x = xo +
WI

Ws
µx, µ̂y = yo +

HI

Hs
µy, (23)

and

σ̂2
x =

WI

Ws
σ2
x, σ̂2

y =
HI

Hs
σ2
y, (24)

where Ws, Hs indicates the width and height of the
saliency maps, WI , HI indicates the actual width and
height of the displayed images {I1, . . . , IN}, and (xo, yo)
indicates the display origin of the images. The average
(µ̂x, µ̂y) corresponds to the estimated gaze point g. The
estimated variances are not directly used in our current
system, however the estimation accuracy will be improved
by incorporating techniques such as the Kalman filter as
in [28].

3 FEATURE WEIGHT OPTIMIZATION

The previous section describes the complete pipeline of
the training the gaze estimator and testing method. In the
saliency aggregation step (Section 2.2), all six saliency
features {p̄(f)} are independently aggregated, and the ag-
gregated maps are linearly combined by Eq. (11) to produce
the summed map p̄.

Although most existing methods use equal weights for
simplicity [11], [14], [26], how to optimally tune the
weights to achieve an even higher correlation between the
visual saliency and gaze points remains unclear. Some
studies use a data-driven learning approach to optimally
tune the weight parameters using known gaze points [18],
[19], [20], [21]. In our scenario, we do not have access
to ground truth gaze points. Thus, the feature weights are
refined in our method by using the estimated gaze points
using the data-driven learning approach. The correlation

between the combined saliency maps and gaze points is
refined using this feedback loop.

Once the gaze estimator is built (Section 2.3), it can
be used to estimate the gaze points from the associated
average eye images ē in Dp. Using this dataset, our
method optimizes the feature weights so that the correlation
between the peak of the gaze probability map p̄ and the
gaze point estimate is higher.

Our approach is illustrated in Fig. 6. As described in
Section 2.3, leave-one-out estimates {µ−1, . . . , µ−M} are
obtained for each average eye image in both the X- and Y -
directions. Using these estimated gaze coordinates, target
attention maps {a1, . . . ,aM}, which represent the top-
down gaze point distribution, are generated by drawing
circles at the gaze points with a fixed radius. Since these
leave-one-out estimates can include a large error, the radius
is set to a relatively larger value (∼ 4 degrees in our current
implementation) than the central area of human vision (∼ 1
degree). Using the target attention maps a, the feature
weights ω = t(ω1, . . . , ω6) are optimized by minimizing
the sum of the squared residuals as

ω = arg min
ω

M∑
i=1

||ai −
6∑

f=1

ωf p̄
(f)
i ||

2, (25)

with a non-negativity constraint

ω ≥ 0. (26)

To reduce the number of equations in Eq. (25), na points
are randomly sampled from both the positive and zero
regions in all the attention maps a. The matrix form of
Eq. (25) can be written as

ω = arg min
ω

M∑
i=1

||A− P̄ω||2, (27)

where A ∈ R2Mna×1 is a vector that consists of values
at the selected points and P̄ ∈ R2Mna×6 contains the
corresponding feature values in each row. Eq. (27) is
solved by using the non-negative least-squares algorithm
of Lawson and Hanson [32] to obtain the optimal set of
feature weights.

4 EXPERIMENTAL RESULTS

In this section, we present our experimental results to
evaluate our method. We use a set of 80 video sources in
the experiments that are downloaded from the Vimeo web-
site [33], which include various types of video clips, e.g.,
music videos and short films. Some example frames are
shown in Fig. 7. 30-second video sequences are randomly
extracted from each video source without an audio signal,
and resized to a fixed resolution of 960 × 540. These 80
short clips are divided into four datasets A,B,C,D, and
seven novice test subjects t1, . . . , t7 are asked to watch all
of them. The video clips are shown at 25 fps; therefore, the
number of frames is N = 15000 in each set, and the display
resolution is set to WI = 1920 and HI = 1080. Although
it highly depends on the algorithms and can be done prior
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Fig. 7. Examples of video clips used in experiments.
We use a set of 80 video clips downloaded from the
Vimeo website [33]. All the pictures are licensed under
a Creative Commons License.2

to the recording session of the eye images, the most time
consuming part of the proposed framework is the saliency
extraction step. For an efficient computation, the saliency
maps are calculated at a smaller resolution, Ws = 32 and
Hs = 18, in our experiments. One pixel corresponds to
about 1.35 × 1.35 degrees in our current setting, which is
close to the limit of the central area of human vision.

Throughout the experiment, the parameters are set
at ns = 5, τe = 0.45, Ts = −300, αe = 0.008, nf = 3,
τf = 0.2, ng = 1000, na = 40, and τs is adaptively set
to retain the top 15% of pixels and the remaining 85%
are set to zero in each map. These parameter settings are
empirically obtained from our experiment. In our current
implementation, when M ' 100, it took about 1 minute
for parameter optimization, and 1 millisecond per frame for
estimation using a 3.33-GHz Core i7 CPU with a simple
code parallelization using OpenMP [34].

4.1 Experiment Details
A chin rest is used during the experiments to fix the peo-
ples’ head positions, and a 23-inch Full HD (508.8×286.2
mm) display is placed about 630 mm away from the subject
to show the video clips. A VGA-resolution camera is placed
under the display to capture eye images.

We use the OMRON OKAO Vision library to detect the
corners of each eye. We use template matching around the
detected corners of each eye to ensure alignment accuracy.
Small template images of the corners of each eye are
registered during the initialization, and the locations with
the highest normalized cross-correlation are used as the
aligned corner positions. Based on the aligned positions
as illustrated in Fig. 8 (a), the eye images are cropped to a
fixed size of 70× 35 pixels.

The eye images are histogram-equalized and pixels with
intensity lower than the given threshold are truncated to
zero so that images contain only eye regions (Fig. 8 (b)) to
minimize effects caused by lighting changes. The threshold
value is automatically decided using Otsu’s method [35].

2. From top to bottom, left to right: “The Eyewriter” by Evan Roth
(http://vimeo.com/6376466), “Balloons” by Javi Devitt (http://vimeo.com/
10256420), “Tenniscoats - Baibaba Bimba — A Take Away Show” by La
Blogotheque (http://vimeo.com/11046286), “Persona” by superhumanoids
(http://vimeo.com/13848244), “MADRID LONGBOARD” by Juan Rayos
(http://vimeo.com/12132621), and “MATATORO” by Matatoro Team
(http://vimeo.com/13487624).

(a) (b)

Fig. 8. Examples of eye images. (a) The eye images
are cropped to a fixed size based on the detected
positions. (b) The images are histogram-equalized and
thresholded so that they contain only the iris and eye
contours.
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Fig. 9. Error comparison of commercial gaze estimator
(Tobii TX300) and calibrated estimation method. A
target point (the ground truth) is explicitly displayed
to the test subjects, and the estimation accuracy is
evaluated by assessing the deviation from the ground
truth.

Finally, we apply a discrete Fourier transform to obtain
the 4900-dimensional feature vectors e, which consists of
Fourier magnitudes of both the left and right eye images.

Ground truth.
We use a Tobii TX300 gaze tracker [36] to obtain the

ground truth to quantitatively assess the effectiveness of
our proposed method. The Tobii gaze tracker is placed
within our setup and run in parallel with our method to
obtain the ground truth gaze points. In addition, we also
run a standard appearance-based gaze estimation method
that uses an explicit calibration (in short, what we call
a calibrated method hereafter) as a baseline method for
further assessing our method. We show 16 × 9 reference
points for each test subject at a regular interval on the
display to train the estimator of the calibrated method. The
eye images are recorded during the calibration to establish
the mapping between the eye image and the gaze points.
Once the pairs of reference gaze points and eye images are
obtained, a learning process, which is the same manner
as described in Section 2.3, is performed to obtain the
mapping.

It is important to discuss the accuracy of the reference
method that we use as the ground truth. The catalog
specification of the accuracy of the Tobii TX300 is less than
1 degree. However, the error can be larger depending on
the test subjects and installation conditions. We conduct a
preliminary experiment using our setting to verify the actual
accuracy of both the Tobii gaze tracker and the calibrated
gaze estimator. A total of 120 target points are randomly

http://vimeo.com/6376466
http://vimeo.com/10256420
http://vimeo.com/10256420
http://vimeo.com/11046286
http://vimeo.com/13848244
http://vimeo.com/12132621
http://vimeo.com/13487624
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shown on the display to each of the seven test subjects.
The subjects are asked to look at these target points, and
we assess the gaze estimation accuracy using the target
points as the ground truth gaze points. Fig. 9 shows the
average distance errors between the ground truth target
points and the estimated gaze points by the commercial
and calibrated gaze estimators. As shown in the plot, the
estimation accuracy depends on the subjects in our setting.
The average errors are similar in these two approaches;
it is about 30 mm (' 2.7 degrees) with the commercial
estimator, and 25 mm (' 2.3 degrees) with the calibrated
estimator. We observe that there is a fundamental limit in
the accuracy evaluation of a gaze estimator from these
experiments. As described above, we use the output of
the commercial gaze estimator as the ground truth because
of its availability to the readers and reproducibility in the
experiments.

4.2 Gaze Estimation Result

We examine the performance of the proposed method by
using the following procedure. First, we use the entire
dataset for both training and testing to assess the upper-
bound accuracy of the proposed method, i.e., the training
data performance. Second, we divide the dataset into two,
one for training and the other for testing, to evaluate the
generalizability of the proposed gaze estimator, i.e., the test
data performance.

Performance evaluation.
We first assess the performance, where the same dataset

is used for both the training and testing. We perform this
evaluation using four dataset A,B,C,D independently. The
estimation results are summarized in Table 1. Each row cor-
responds to the result using dataset A,B,C,D, where all
20 video clips are used for both the training and testing. The
first two columns indicate the AUCs of the average ROC
curves of the raw saliency maps s and the gaze probability
maps p̄. The remaining columns list the estimation errors
of the proposed method and the calibrated appearance-
based estimator for both the distance and angular errors.
The errors are described by their (average ± standard
deviation) form. The distance error is evaluated by using the
Euclidean distance between the estimated and the ground
truth gaze points, and the angular errors are computed using
the distance between the eyes and the display.

Similarly, Table 2 lists the estimation error of each
subject t1, . . . , t7. Each row corresponds to the average
of the results of the corresponding test subject using the
four datasets A,B,C,D. The columns list the AUCs and
estimation errors in the same manner as in Table 1. The
overall average error is 39 mm (' 3.5 degrees). It can be
seen from Table 1 and Table 2 that the performance does
not have a strong dependency on the dataset and subjects.
Although our method has a larger error than the calibrated
estimator, our method can still achieve an accuracy of 3.5
degrees, which is sufficient for obtaining the regions of
attention in images.
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Fig. 10. Estimation errors w.r.t. different amounts of
training video clips. Each point is plotted by choosing
a limited number of learning video clips from the corre-
sponding dataset, and the average error is computed
from the results from the seven test subjects.
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Fig. 11. Comparison of two estimation methods. All
four datasets are divided into two subsets. One subset
is used to train the gaze estimators, and the estima-
tion accuracy is independently examined using each
subset. The dark bars represent the training data per-
formance, and the light bars represent the test data
performance.

Performance variation w.r.t. the amount of training
data.

We conduct a test using varying amounts of training
video data to analyze the performance variations with
respect to the amount of training data. Fig. 10 shows a
comparison of the estimation errors for different amounts
of training video clips. The X-axis represents the number
of video clips used from each dataset. The Y-axis shows the
average error that is computed from all seven test subjects.
For this evaluation, five video clips are randomly selected
from the training dataset and used as the test data. The
result shows that the larger amount of training data results
in a more accurate estimation result, though improvement
slows after 10 training clips.

Performance on test data.
We use the test data sampled from the training dataset

to verify the upper-bound on the accuracy in the above
experiments. Our gaze estimator can also be applied to
unseen video clips after training. We perform a test by
separating the training and test datasets to evaluate the
generalizability of the proposed method. Each of the four
dataset A, . . . ,D in this test are divided into two subsets
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TABLE 1
Average error for each dataset. Two AUC columns show the AUCs of the average ROC curves of the raw
saliency maps s and the gaze probability maps p̄. The remaining columns are the distance and angular

estimation errors (average ± standard deviation) when using the two estimation methods.
s p̄ Proposed method Calibrated method

Dataset AUC AUC error [mm] error [deg.] error [mm] error [deg.]
A 0.80 0.92 41 ± 26 3.7 ± 2.3 33 ± 15 3.0 ± 1.4
B 0.83 0.95 36 ± 23 3.3 ± 2.1 24 ± 13 2.2 ± 1.2
C 0.81 0.94 41 ± 25 3.7 ± 2.3 27 ± 15 2.5 ± 1.4
D 0.83 0.91 36 ± 25 3.3 ± 2.3 34 ± 16 3.1 ± 1.5

Average 0.82 0.93 39 ± 25 3.5 ± 2.3 30 ± 15 2.7 ± 1.4

TABLE 2
Average error of each subject. The columns indicate the AUCs of the average ROC curves and estimation

errors in the same manner as in Table 1.
s p̄ Proposed method Calibrated method

Subject AUC AUC error [mm] error [deg.] error [mm] error [deg.]
t1 0.80 0.93 41 ± 28 3.7 ± 2.6 29 ± 16 2.6 ± 1.4
t2 0.79 0.92 41 ± 27 4.0 ± 2.4 30 ± 14 2.7 ± 1.3
t3 0.83 0.93 33 ± 22 3.0 ± 2.0 34 ± 15 3.1 ± 1.4
t4 0.81 0.94 42 ± 24 3.8 ± 2.2 30 ± 14 2.7 ± 1.3
t5 0.84 0.92 35 ± 23 3.2 ± 2.1 27 ± 15 2.5 ± 1.4
t6 0.83 0.94 36 ± 22 3.2 ± 2.0 24 ± 12 2.2 ± 1.1
t7 0.82 0.90 39 ± 27 3.6 ± 2.5 33 ± 18 3.0 ± 1.7

Fig. 12. Gaze estimation results. The estimation re-
sults of our method are rendered as 2-D Gaussian
circles. The corresponding input eye images are shown
at the top-left corner. The overlaid cross shapes repre-
sent the ground truth gaze points obtained by the com-
mercial gaze tracker (Tobii TX300), and the solid circles
indicate the gaze points obtained from the calibrated
estimator.

that consist of 10 video clips each. One subset is used
to train our gaze estimator, and the other subset is used
for testing. At the same time, we evaluate the performance
using the original training data as the test data for a com-
parison. Fig. 11 shows the comparative results of these two
estimation scenarios. The dark bars in the figure indicate
the training data performance, and the light bars correspond
to the test data performance. In most of the datasets,
the training data performance showed the higher expected
accuracy. However, the test data performance is comparable
to it without any significant performance degradation.

Fig. 12 shows some examples of the gaze estimation
results. The output of our method is rendered as a 2-
D Gaussian circle centered at (µ̂x, µ̂y) with a variance
(σ̂2
x, σ̂

2
y) given by Eq. (19), and the mean coordinate

(µ̂x, µ̂y) is used as the estimated gaze point. The input eye
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Fig. 13. Comparison of hyperparameters tuning
method. The dark bars indicate the estimation errors
after optimization using Eq. (22), and the light bars
indicate the optimization results using Eq. (20). The
proposed method without using Eq. (22) results in
lower errors.

images are shown at the top-left corner. The overlaid cross
shape represents the ground truth gaze point obtained by
the commercial gaze tracker, and the solid circle shows the
gaze point estimated by the calibration-based estimator.

4.3 Effects of Parameter Optimization
In this section, we quantitatively evaluate the effectiveness
of our parameter optimizations. We first assess the effective-
ness of the hyperparameter tuning described in Section 2.3,
and second, we evaluate the feature weight optimization
described in Section 3.

Hyperparameter tuning results.
The effectiveness of the hyperparameter tuning of the

Gaussian process regression is summarized in Fig. 13.
The dark bars indicate the estimation errors after our
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Fig. 14. Optimized weights of saliency features. The
pie graph shows the ratio of the optimized feature
weights averaged over all test subjects.
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Fig. 15. Normalized Scanpath Saliency (NSS) scores
of gaze probability maps. Dark bars indicate NSS
values using optimized weights, and light bars indi-
cate NSS values using initial equal weights. Optimized
weights always outperform equal weights.

optimization using Eq. (22), and the light bars show the
optimization results using Eq. (20), which corresponds to
the standard formulation used to evaluate the sample-wise
error. Our optimization method reduces the error by about
0.5 degrees.

Feature weight optimization results.
This experiment assesses the effectiveness of the feature

weight optimization by our feedback loop, where the fea-
ture weight is updated to further enhance the accuracy of
the gaze estimation. The original feature weights are all
set to one. After feature weight optimization, the ratio of
the feature weights is optimized, as shown in Fig. 14. The
pie graph shows the ratio of the average weight computed
from the data from all test subjects. After optimization, face
and orientation features have greater weight compared with
the others. This result is consistent with the report given by
Zhao et al. [21], which optimized the feature weights using
known gaze points.

We compute the Normalized Scanpath Saliency
(NSS) [37] to evaluate the correlation between the gaze
probability map and the estimated gaze point. The original
definition of NSS is the normalized average of the saliency
values at the fixation locations, i.e., the saliency maps
are linearly normalized to have a zero mean and a unit
standard deviation, and the NSS is computed as the average
of the saliency values at the fixated positions. Therefore,
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Fig. 16. Error comparison between before and after
feature weight optimization. Optimized weights led to
slightly reduced error for 3 of 4 datasets.

a higher NSS score indicates a greater correlation. In
our case, instead of using the fixation locations, we use
the true gaze points that are associated with the average
eye images to compute the NSS. Given all the sets of
average eye images and the gaze probability maps, we
first compute the ground-truth gaze points. Since the
average eye images are synthesized features as discussed
in Section 2.2, we use the estimates from the calibrated
method instead of the commercial gaze tracker. Using
the ground-truth gaze points, we compute the NSS using
the normalized gaze probability maps. Fig. 14 shows the
summary of the results; dark bars indicate NSS values
after optimization, and light bars indicate NSS values
of initial equal weights. NSS scores are improved after
optimization for all datasets.

Fig. 16 shows an error comparison between the before
and after feature weight optimization. Dark bars indicate
errors after feature weight optimization, and light bars
represent errors when initial equal weights are used. While
the improvement is rather small, the optimized weights
yield a higher accuracy in 3 out of 4 datasets. One possible
explanation for this small improvement would be that
the aggregated feature maps p̄(f) are already sufficiently
accurate for predicting gaze points, and the estimation
accuracy is almost saturated in our setting. However, this
improvement suggests that it is useful to incorporate the
feedback loop for saliency optimization, especially when
more complex saliency map models with many features are
incorporated.

4.4 Spatial Bias in Error

The accuracy of our method depends on the distribution of
the training samples. Fig. 17 shows the spatial distribution
of the average estimation errors in the display coordinate. In
the figure, each grid corresponds to the ground truth gaze
location, and the magnitude and direction of the average
estimation errors are rendered. In Fig. 17 (a), the higher
intensity indicates a greater magnitude of estimation errors.
In (b), the error directions are color coded, where each
color corresponds to a certain direction that is illustrated
in the reference circle, and a higher saturation indicates a
greater error magnitude, like in Fig. 17 (a). There exists a
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Fig. 17. Spatial distribution of estimation errors in
display coordinate: (a) higher intensity corresponds to
greater numbers of estimation errors, and (b) color
wheel indicates error directions while saturation indi-
cates error magnitudes.

Average saliency map Distribution of gaze points

Fig. 18. Average saliency map and spatial histogram of
gaze points. The image on the left shows the average
of all the raw saliency maps extracted from the four
video clips used in the experiment. The image on the
right shows the spatial histogram of the ground truth
gaze points from the experimental dataset. A higher
intensity corresponds to larger counts of gaze points.

systematic bias, i.e., large errors are observed around the
peripheral areas, and the error directions are biased toward
the center of the display.

Fig. 18 shows the average saliency map and spatial
histogram of the gaze points. The image on the left shows
the average of all raw saliency maps extracted from all
datasets used in our experiment. The image on the right
shows the spatial histogram of the ground truth gaze points
obtained from the same datasets, in which the brighter
intensity represents a higher frequency. Since salient objects
are typically located near the centers of video frames, the
average for the saliency maps is lower around the display
boundary. The actual gaze points also tend to concentrate
around the center of the display. As a result, the number
of learning samples at the display edges is limited, and a
bias in the estimation accuracy exists because of this.

5 CONCLUSION

We propose a novel gaze estimation framework in this
paper that auto-calibrates by using saliency maps. Unlike
the previous approaches that require an explicit calibration,

our method automatically establishes the mapping from
the eye image to the gaze point using video clips. Taking
a synchronized set of eye images and video frames, our
method trains the gaze estimator by regarding the saliency
maps as the probabilistic distributions of the gaze points.
In our experimental setting with fixed head positions, our
method achieves an accuracy with about a 3.5-degree error.

We took an appearance-based gaze estimation approach.
Appearance-based methods have a significant benefit in that
they can be constructed using only a monocular camera
without requiring a specialized hardware device. However,
one of the biggest technical challenges common among
existing appearance-based methods is the difficulty in han-
dling the head pose movements. This is mainly due to
the fact that allowing a head pose movement significantly
expands the space of the training samples, and thus, the
training becomes more difficult. There is some effort put
forth to handle the head pose variations in an appearance-
based setting [9], [38], and our future work includes
adopting these techniques to allow head pose movement.
In addition, as shown in [25], it is an alternative future
direction to incorporate our approach in a model-based gaze
estimation framework to further improve the estimation
accuracy.

Naturally, the estimation accuracy of our method depends
on the quality of the raw saliency maps extracted from the
input video clips. The human gaze control mechanism is
not yet completely understood, and there is a wide range of
possibilities for more advanced saliency models to be used
in our method to improve the gaze estimation accuracy.
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