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Abstract—We present a bi-polynomial reflectance model that can precisely represent the low-frequency component of reflectance.
Most existing reflectance models aim at accurately representing the complete reflectance domain for photo-realistic rendering purposes.
In contrast, our bi-polynomial model is developed for the purpose of accurately solving inverse problems by effectively discarding the
high-frequency component while retaining nonlinear variations in the low-frequency part. The bi-polynomial reflectance model is useful
for estimating reflectance and shape of an object. Experimental evaluation in comparison with other parametric reflectance models
demonstrates that the proposed model achieves better performance in reflectometry and photometric stereo applications.
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1 INTRODUCTION

P ARAMETRIC modeling of reflectances plays an important
role in both rendering and inverse problems in radiomet-

ric image analysis. The vast majority of existing parametric
reflectance models are developed for the purpose of photo-
realistic rendering. They are designed to have an accurate
representation of specular components and successfully ap-
plied to forward problems in computer graphics. However,
these reflectance models are not necessarily suitable for inverse
problems in computer vision, such as reflectance and shape
estimation. In fact, many of these reflectance models severely
complicate the inverse problems by introducing high nonlin-
earity when they are directly used in the computation, and as
a result, the solution methods are forced to involve unstable
and expensive nonlinear (or even non-convex) optimization
procedures. While one could use a simplistic model to avoid
such a problem, e.g., the Lambert’s reflectance model, the
accuracy of estimates suffers from its discrepancy from the
real-world reflectance. Therefore, it is desired to develop a
reflectance model that well represents real-world reflectances
while retaining simplicity for inverse problems.

In forward rendering problems, one of the key challenges
is to accurately model specular reflection that exhibits high-
frequency reflectance variations in the incident or exitant
angular domain. Since the specular component significantly
varies across materials, in order to faithfully represent it, the
specular term of a reflectance model tends to become complex
and highly nonlinear. While it is essential for photo-realistic
rendering in computer graphics, explicit modeling of high-
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frequency specular reflections is seldom necessary for inverse
problems in computer vision, particularly when sparse lighting
(such as a directional light) is used. In fact, in an image, most
of the pixels exhibit low-frequency reflections (close to diffuse
reflectances) for most materials under sparse lighting. For
example, high-frequency (strong specular) reflections are only
observed in a sparse manner at points where the surface normal
is close to the bisector of viewing and lighting directions.
Recent robust photometric stereo methods [1], [2] are built
upon similar observation, where high-frequency reflectances
are treated as outliers.

Motivated by this observation, we develop a compact para-
metric Bidirectional Reflectance Distribution Function (BRD-
F) model for radiometric image analysis using a bi-polynomial
representation. We design this model with two goals by
restricting it to isotropic BRDFs. First, it should be able to
faithfully represent low-frequency reflectances of a broad class
of materials. Second, it should make the solution of inverse
problems tractable. Our model is built upon a factorized
form of bivariate BRDF models for isotropic materials [3],
[4], where the BRDF is represented as a product of two
univariate functions of half and difference angles. We approx-
imate these univariate functions by low-order polynomials.
In the preliminary version of this work [5], we employed
quadratic functions for these univariate functions. In this work,
we extend it to a general bi-polynomial model and perform
detailed analysis and validations across varying polynomial
orders. We further perform comprehensive comparisons with
various BRDF models by applying this model to reflectometry
and photometric stereo. We show that accurate results can be
obtained by analyzing the low-frequency reflectances with our
proposed model.

The rest of this paper is organized as follows: In the
next section, we discuss previous works in related areas.
In Section 3, we define low-frequency reflectance and show
its approximation by using low-intensity observations. In Sec-
tion 4, we introduce the proposed bi-polynomial model. We
then assess our model by fitting measured BRDFs and compare
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with existing parametric models. In Section 5 and Section 6,
we show applications of our model to reflectometry and
photometric stereo problems. Section 7 concludes the paper.

2 RELATED WORKS

Reflectance Modeling. To precisely represent the appearance
of real-world materials, various parametric BRDF models have
been developed over the decades. These BRDF models can
be categorized into physically-based and empirical models.
Physically-based models, such as the Torrance-Sparrow [6]
and Cook-Torrance [7] models, are mostly designed based
on the microfacet theory. They assume that surfaces consist
of shiny V -grooves with consideration of geometric attenua-
tion (masking, shadowing, and inter-reflections) and Fresnel
effects. Based on a similar microfacet theory, the Oren-Nayar
model [8] captures the reflectance of rough surfaces. The
empirical models such as the Phong [9] and Blinn-Phong [10]
models are widely used because of their computational ef-
ficiency. The Lafortune model [11] uses generalized cosine
lobes. This model can fit measured reflectance data with
high precision, but with unintuitive parameters. There are
also models that bridge these two categories by partly using
physically motivated terms, e.g., the Ward [12] and Ashikhmin
models [13]. The Ward model is also based on the microfacet
theory, but omits the Fresnel and geometric attenuation terms.
The Ashikhmin model is an anisotropic BRDF model with
a non-Lambertian diffuse term. An experimental evaluation
of various models with measured data can be found in [14].
Generally, parametric models are compact and easy to use for
forward problems, but they are only accurate for a limited
class of materials.

A BRDF can also be represented by a 4-D discrete table
indexed by lighting and viewing directions. For isotropic
materials, this representation can be reduced to a 3-D ta-
ble [15], [16]. The 3-D table can be re-arranged using half
and difference vectors [17] through a re-parameterization as
suggested in [3]. It can be further reduced to a 2-D table for
a wide range of isotropic materials by omitting the rotation of
difference vector [4], [18], [19]. Although high-quality render-
ing can be achieved using the discrete table representations,
such non-parametric forms are generally unsuitable for inverse
problems because the number of parameters to be estimated
becomes prohibitively large. To maintain the accuracy while
reducing the complexity, recent approaches use various basis
functions to represent general BRDFs [20], [21], [22]. Our
bi-polynomial model shares a similar goal of simplifying the
BRDF representation for general materials, but we focus on
modeling low-frequency reflectances with a simpler parametric
form. Furthermore, we aim to solve inverse problems for
radiometric image analysis rather than forward rendering.

Radiometric Image Analysis. Radiometric image analysis
seeks to recover scene properties, such as reflectance and
shape, from the recorded scene radiance. Here we briefly
review related work in reflectometry and photometric stereo,
i.e., surface reflectance and shape estimation, respectively.

Most of the works in reflectometry are based on parametric
reflectance models. Yu et al. [23] use a sparse set of photos

and assume the Ward reflectance model with spatially varying
diffuse reflection and homogeneous specular reflection. Boivin
and Gagalowicz [24] use the same BRDF model, but their
method deals with only a single image in a hierarchical and
iterative framework. Hara et al.’s method [25] uses multiple
point light sources to estimate both illumination distribution
and reflectance represented by the Torrance-Sparrow mod-
el. There are recent works of reflectometry that use non-
parametric bivariate BRDFs with a discrete table represen-
tation. Romeiro et al. propose reflectometry with/without
measured illumination [4], [19] by assuming that the isotropic
BRDFs can be represented using a 2-D table. Their evaluation
shows that the 2-D representation is accurate for a majority of
the isotropic BRDFs.

In a shape estimation context, early photometric stereo
works [26], [27] are based on the Lambert’s reflectance
model. Although the computation is simple, their performance
degrades on many real surfaces, which often exhibit non-
Lambertian reflectance. Some methods use four light sources
to avoid shadow and specularity [28], [29]. By using more
images and recent robust estimation techniques, the outliers
that deviate from the Lambertian assumptions can be effi-
ciently detected and discarded through rank minimization [1]
and sparse regression [2]. To make use of all the observed
data, more sophisticated parametric BRDF models have also
been used, such as the methods based on the Torrance-Sparrow
model [30], [31], the Ward model [32], [33], and other multi-
lobe models [34]. However, all these methods assume the
diffuse reflectance to be Lambertian, which is not true for
real surfaces.

To deal with more general materials, especially those with
non-Lambertian diffuse reflection, some recent methods solve
the photometric stereo problem with reflectance symmetries,
such as isotropy and/or reciprocity. Alldrin et al. [35] ex-
ploit isotropy to estimate the azimuth angle of normals. By
assuming bivariate BRDFs, they estimate the elevation angle
of normals and surface reflectances iteratively [18]. By further
assuming that the BRDFs can be projected as a 1-D monotonic
function, the elevation angle can also be estimated without
using iterative optimization [36]. A theory of reflectance sym-
metries and its application to photometric stereo is summarized
in [37]. Based on those properties, surface reconstruction
methods using a special lighting rig and multi-view images
are introduced in [38] and [39]. Photometric stereo can also
be applied to general diffuse surfaces by considering some
consensus properties [40]. Given hundreds of images, surface
normal can be estimated by exploring the similarity of radiance
profiles [41], [42] and attached shadow codes [43], under un-
known illumination and unknown reflectance. Given thousands
of images, it is even possible to apply photometric stereo
to general anisotropic surfaces [44]. Although these methods
can deal with a great range of general materials, they usually
require special imaging setup or complicated optimization. In
comparison, our bi-polynomial representation is compact yet
accurate for many real materials. As a result, data capture and
optimization becomes simple with our method.

Given photometric stereo images, biquadratic polynomials
are useful for representing the images that may include self-
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• BRDF 1 (alum‐bronze) and 89 (violet‐acrylic)

l =   (0, 0, 1)T                   (1, 0, 1) T         (1, 0, 0)T 

For normals on the hemisphere, v = (0, 0, 1)T
n =   (0, 0, 1)T                    (1, 0, 1) T           (1, 0, 0)T

For lights on the hemisphere, v = (0, 0, 1)TFig. 1. An illustration of low-frequency reflectance. From
left to right, spheres illuminated by distant lights from
directions [0, 0, 1]>, [1/

√
2, 0, 1/

√
2]>, [1, 0, 0]> and viewed

from [0, 0, 1]> are shown.

shadowing and interreflections as shown in polynomial texture
maps [45], which are able to interpolate images and synthesize
appearances under new lighting directions. A more recent
approach [46] extends the polynomial texture maps to handle
specularity and shadow. Our model uses a similar mathemat-
ical form for representing the low-frequency component of
general isotropic reflectance.

3 LOW-FREQUENCY REFLECTANCE
Let us consider the reflectance as a function of lighting,
viewing, and surface normal directions. We use the term low-
frequency reflectance to denote the reflectance component
that does not abruptly change with the variation of lighting
directions. Note that this definition does not limit the low-
frequency component to diffuse reflectance, because it can
include a wide and blunt specular lobe.

On many real surfaces, strong specularity is only observed
when the surface normal is close to the bisector of lighting
and viewing directions. Thus, the majority of pixels in an
image should present low-frequency reflectances under a di-
rectional (or sparse) lighting. We show synthetic spheres in
Figure 1 rendered using the measured BRDFs ALUM-BRONZE
(top) and VIOLET-ACRYLIC (bottom) from the MERL BRDF
database [17]. The spheres are rendered under different light-
ing directions but a fixed viewpoint. The majority of pixels
of these renderings have smoothly varying values1, which we
refer to as low-frequency reflectance observations. For a static
scene observed from a fixed camera under a continuously mov-
ing light source, the low-frequency reflectances are observed
at the pixels where intensities do not show sudden changes
under varying lighting directions. We seek to model such
low-frequency reflectances in a concise form by effectively
discarding the high-frequency reflectances for applications to
inverse problems.

1. These high-dynamic range (HDR) images are tone mapped using the
method of Reinhard et al. [47].

0         1          2         3         4          5

100%

T l
ow

Spherical harmonics order

5%

50%

0

3

RMSE
Fig. 2. Fitting errors of spherical harmonics with different
orders to observations under various Tlow. The result is
square-rooted for a visualization purpose. The legend
shows the mapping between the error magnitude and
color. The black areas are undefined due to insufficient
equations for fitting.

To capture low-frequency reflectances, we need a method
to identify these observations. As we will show below, the
low-frequency reflectances have strong correlation with low-
intensity observations. Hence, we can simply use an inten-
sity threshold Tlow to extract observations of low-frequency
reflectance in practice. For example, given a set of photo-
metric stereo images, we may draw an intensity profile for
each pixel under varying lighting directions. After discarding
observations in shadow, we sort all the remaining observations
in an ascending order and keep only those ranked below a
percentage Tlow.

To evaluate the effectiveness of this simple method, we fit
spherical harmonics of different orders to our low-intensity
observations and assess the fitting error. We perform fitting
for the intensity profile at each pixel, where the observation
is a function of lighting directions. The intensity profile y can
be fit by spherical harmonics ỹ represented as

ỹ(θ, φ) =

b∑
l=0

l∑
m=−l

ClmYlm(θ, φ), (1)

where (θ, φ) are elevation angle and azimuth angle of a
lighting direction, b is the order of spherical harmonics, Y is
spherical harmonics basis functions, and C is the coefficient.
The coefficient C can be solved for by linear least squares. For
experimental validation, we fit Equation (1) to the observations
thresholded by Tlow using all of the 100 measured materials
in the MERL database [17]. Specifically, we fix the viewing
direction as [0, 0, 1]> and sample 1620 normals by uniformly
choosing 36 longitudes and 45 altitudes on the hemisphere. For
each of these normals, we use 100 lighting directions randomly
sampled from the hemisphere. In other words, we have 1620
intensity profiles, and the length of each is 100. We then vary
Tlow from 10% to 100% with a step of 10%, and vary the
order of spherical harmonics b from 0 to 5. For each intensity
profile of length f , given fixed b and Tlow, we compute the
relative Root Mean Square Error (RMSE) [4], which is defined
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Fig. 3. The definitions of θh and θd.

as

RMSE =
1

f

√√√√ f∑
i=1

(yi − ỹi)2
y2i

, (2)

where y and ỹ are original and spherical harmonics fit values.
For each fixed b and Tlow, we perform this evaluation for
all 1620 normals and 100 BRDFs, and visualize the mean
RMSE in Figure 2. From the error distribution, we can see
that low-order spherical harmonics closely fit the observations
selected by a small Tlow below 50%, as indicated by the
blue rectangle in the figure. Note that our representation
in Equation (1) is different from the spherical harmonics
based BRDF representation in [48], which is not intended
for inverse problems. We use Equation (1) only to verify the
effectiveness of the intensity thresholding for selecting low-
frequency reflectances.

4 THE BI-POLYNOMIAL BRDF MODEL

This section describes the proposed bi-polynomial BRDF
model. Given surface normal, lighting, and viewing direc-
tions n, l, and v, we can calculate the half vector as
h = (l + v)/‖l + v‖, which is the bisector of l and v. Fol-
lowing the notations of [3], we use θh to denote the half angle
between n and h, and θd for the difference angle between l
(or v) and h as illustrated in Figure 3. Hence, the following
relationships hold: n>h = cos θh and l>h = cos θd.

Our reflectance model is built upon the bivariate BRDF
model of [3], where it is shown that most of the isotropic
BRDFs can be represented as a bivariate function ρ(θh, θd).
This representation is evaluated by [4] with a large number
of measured BRDFs [17] for the development of passive
reflectometry. It is further discussed in [3] that any isotropic
BRDF based on the microfacet theory should consist of a
univariate function of θh, and its Fresnel term should be a
univariate function of θd. As shown in [13] and [49], the
masking and shadowing terms in a microfacet-based BRDF
model vary smoothly and are actually close to constant.
These analyses motivate us to further simplify the bivariate
function ρ(θh, θd) as a factorized form ρ1(θh)ρ2(θd). Similar
simplification has been used in [50] to assist material capturing
and editing.

To obtain a compact parametric model suitable for inverse
problems, we represent the factorized terms ρ1(θh) and ρ2(θd)

as polynomial functions of cos θh and cos θd, respectively. As
a result, our BRDF model becomes a bi-polynomial function
represented as

ρ(θh, θd) 'ρ1(θh)ρ2(θd) = ρ̃1(n>h)ρ̃2(l>h)

=

k∑
i=0

Ai(n
>h)i

k∑
j=0

Bj(l
>h)j ,

(3)

where k is the order of polynomials. The above equation can
be further expanded by the following relaxation

ρ̃(x, y) =

k∑
i=0

k∑
j=0

Cijx
iyj , (4)

where Cij = AiBj and x = n>h, y = l>h for notation
simplicity.

In this paper, we focus on discussing the bilinear, biquadrat-
ic and bicubic models, i.e., k = 1, 2, and 3. Let us take the
biquadratic model (k = 2) as an example. It can be expressed
as

ρ̃1(n>h)ρ̃2(l>h) =
(
A2(n>h)2 +A1(n>h) +A0

)(
B2(l>h)2 +B1(l>h) +B0

)
,

(5)

with its linear relaxation as

ρ̃(x, y) =C22x
2y2 + C21x

2y + C20x
2 + C12xy

2+

C11xy + C10x+ C02y
2 + C01y + C00.

(6)

In the biquadratic case, there are 9 reflectance parameters in
the relaxed linear model in total, and we denote them in a
vector form as

x = [C22, C21, . . . , C00]> ∈ R9×1. (7)

Note that the conversion from Equation (5) to Equation (6) is
unique, but the other direction is not, and Equation (6) may not
always have the product form of Equation (5). Equation (6)
is a linear function of its parameters [C22, C21, · · · , C00]>,
while Equation (5) is a bilinear function of [A2, A1, A0]> and
[B2, B1, B0]>. Hence, the relaxed model is easier to fit. The
bilinear and bicubic model can be defined similarly, with 4 and
16 reflectance parameters in their relaxed forms, respectively.

It is also straightforward to express the factorized terms ρ̃1
and ρ̃2 in Equation (3) by higher-order polynomials, or even
use different orders of ρ̃1 and ρ̃2. But we experimentally found
that models with higher orders had little advantage in mod-
eling accuracy and were suffered from instability. Additional
discussions about the choice of orders of polynomials are left
for the experiment section.

There are also other possible parameterizations of the
bivariate function. We choose polynomials mainly for two
reasons: 1) As discussed in [45], polynomials are good
at representing smooth intensity variations (low-frequency)
caused by different lightings; 2) Polynomials make the in-
verse problem tractable. For example, one might use the
Discrete Cosine Transform (DCT) as an alternative in the
domain of (θh, θd) to represent the bivariate BRDF, which also
yields high modeling precision. However, when recovering
the unknown surface normal n, the problem becomes highly
nonlinear about n, because a DCT basis has the form of
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cos(θh/k) = cos(arccos(n>h)/k), where k is a non-zero
integer. In contrast, our polynomial model is much simpler
and only involves terms like (n>h)k.

4.1 Relationship with other reflectance models
The bi-polynomial model can accurately represent the low-
frequency component of conventional dichromatic reflectance
models [51], which represent reflectance as a summation of
Lambertian diffuse and specular terms. Since the specular term
is mostly concentrated in the high-frequency component, the
low-frequency component of these models is largely Lam-
bertian and can be represented well by our bi-polynomial
model. For example, the biquadratic model can be degraded
to the Lambert’s model if we set A2 = A1 = B2 = B1 = 0
in Equation (5). The bi-polynomial model can also represent
the low-frequency component of other BRDF models that
rely only on n>h. For instance, the Blinn-Phong model [10]
can be represented with the bi-polynomial model by setting
coefficients that are related to l>h (except B0) as zero.

The Cook-Torrance model [7] is widely used to represent
various surface reflectances. It consists of a Lambertian dif-
fuse, and a specular term. Its specular component Sc can be
denoted as

SC =
ks
π

DFG

(n>l)(n>v)
. (8)

The terms D, F , and G are the microfacet distribution,
Fresnel, and geometrical attenuation terms, respectively. The
microfacet distribution D is represented as

D =
1

4m2(n>h)4
exp


(

1− 1
(n>h)2

)
m2

 , (9)

where m indicates the surface roughness, and D is clearly a
function of θh [7]. The Fresnel term F is often simplified by
the Schlick’s approximation [13], [52], denoted as

F = ks + (1− ks)(1− l>h)5, (10)

where ks is a constant. Hence, F is a function of θd. Although
the term G is relatively complicated, it varies smoothly and
is close to a constant over a large range of exitant angles as
evaluated in [13], [49]. Similar to the formulation of Cook-
Torrance model, our model has both θh and θd terms in a
product form. More importantly, as evaluated in [5], the low-
frequency component of the Cook-Torrance model can be
closely approximated by the biquadratic model. Other models
based on the microfacet theory, such as the Ward model [12],
have a similar expression for modeling the specular compo-
nent, written as

SW =
ks

4πm2
√

(n>l)(n>v)
exp

((
1− 1

n>h

)
m2

)
. (11)

The low-frequency component can be purely Lambertian, or
a mixture of Lambertian diffuse, and soft specular terms.
When the surface roughness m is large, the specular lobe will
become wide and blunt, thus the diffuse and specular cannot
be separated by simply using a threshold Tlow. Our model is
designed for dealing with such cases.

*“a(b)” a = sorted BRDF ID in the right plot, (b) = original ID in the database

BRDF fitting error (Isotropic)
Normal: thetaN 2 : 2: 90, phiN 10 : 10 : 360
Light: Random 100
MERL 100 BRDFs

RMSE (instead of MAE)

DARK-RED-
PAINT

WHITE-
FABRIC2

SILVER-
METTALIC-

PAINT2

CHROME

0.005

0

Fig. 4. BRDF fitting errors of the biquadratic model to
all materials in the MERL database. The colors indicate
error magnitudes. The columns vary with Tlow, and the
rows correspond to different BRDFs ordered by the mean
fitting errors over columns. Some rendered spheres are
displayed on the left for reference.

4.2 Model validation using measured data
To verify the representation power of the proposed model, we
fit the biquadratic model to the measured BRDFs in the MERL
database. We use a similar experimental setup as Section 3
with the same set of n, l, and v. The threshold Tlow is applied
in the same manner for extracting low-frequency reflectances.
Note that the fitting experiment in Section 3 is performed for
each normal under varying lightings (or for each intensity
profile), while here we fit the BRDF model to observations
collected from different normal directions. For fitting extracted
low-frequency reflectances, we first solve Equation (6) via lin-
ear least squares, through which we obtain C22, C21, . . . , C00.
By expanding Equation (5), we then establish a system of
bilinear equations as: C22 = A2B2, C21 = A2B1, . . . , C00 =
A0B0, which can be written as C = ab> in a matrix form,
where C ∈ R3×3 stores C22, . . . , C00, a = [A2, A1, A0]>, and
b = [B2, B1, B0]>. This system has multiple solutions. Here,
we use a singular value decomposition (SVD) as C = UΣV>

for obtaining the solution as a = u1
√
σ1 and b =

√
σ1v

>
1 ,

where u1 is the first column vector of U, v>1 is the first row
vector of V>, and σ1 is the greatest singular value in Σ. The
solution is optimal in the least squares sense. To better fit the
measured data (not just to C), we further perform an iterative
optimization for refining a and b by first fixing a to update
b, and then b to update a.

The RMSEs of all BRDFs (rows) varying with Tlow
(columns) are shown in Figure 4. From the region within the
light blue rectangle, we can see that our model closely fits
low-frequency reflectances of different materials. As a general
tendency, our model has smaller fitting errors for materials
with broader specular lobes.

4.3 Comparison with other parametric models
There are parametric models with general diffuse terms, such
as the Lafortune and Ashikhmin2 models. In the Lafortune

2. We only consider the non-Lambertian diffuse terms of these two models.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

model [11], a rotationally-symmetric diffuse component DL

is written as

DL = Cd

(
n>l

)k (
n>v

)k
, (12)

where Cd and k are model parameters. The general diffuse
term of the Ashikhmin model [13] DA is defined as

DA = R

(
1−

(
1− n>l

2

)5
)(

1−
(

1− n>v

2

)5
)
, (13)

where R is the model parameter.
Several parametric models assume a Lambertian diffuse ter-

m, and use a microfacet-based specular component, such as the
Cook-Torrance and Ward models. According to Equation (8)
and Equation (11), these models can be represented as

ρS =
kd
π

+ ksS(n, l,v,m), (14)

where kd and ks are model parameters representing the
strength of diffuse and specular terms, respectively; S is
a nonlinear function with m as another model parameter.
In the Cook-Torrance model, m is encoded in the term D
in Equation (9).

We again use the MERL database for evaluation by setting
the threshold Tlow = 25% to extract the low-frequency
reflectances. Other experiment settings are the same as those
used in model validation in Section 4.2. Fitting the Ashikhmin
model in Equation (13) is straightforward. For fitting the
Lafortune model in Equation (12), we take the logarithm at
both sides of the equation and estimate the log parameters
using linear least squares. For fitting the Cook-Torrance and
Ward models of Equation (14), we adopt a similar strategy
as [14] and use a Matlab function “lsqnonlin” to solve the
nonlinear optimization.

The fitting errors are summarized in Figure 5, and mean
errors across all materials are listed in the first row of Table 13.
We take the biquadratic case as an example to test both
the relaxed model of Equation (6) and the original model
of Equation (5). Their average fitting errors are 7.18×10−4 and
7.97× 10−4, respectively, which suggests their approximated
equivalence in accuracy. Since the relaxed form is more
efficient in computation, for the bi-polynomial model we use
the relaxed form in the rest of the experiments.

Our model has a consistently smaller fitting error than the
general diffuse terms of the Lafortune and Ashikhmin models.
The Cook-Torrance and Ward models underperform our model
in representing the low-frequency reflectance, although specu-
lar terms are included in these models. This is mainly because
the Cook-Torrance and Ward models behave very similarly
as the Lambert’s model in low-frequency reflectance domain.
The bicubic model has the highest modeling accuracy for low-
frequency reflectance, while the bilinear model is less accurate
than the Lafortune model. In terms of modeling complexity,
the bi-polynomial model has simpler analytic forms than other
parametric models, and only a linear least squares fitting is

3. According to Figure 5, the result of the Ward model is very close to the
Cook-Torrance model, and error of the Ashikhmin model is much larger than
others. Hence, these two models are omitted thereafter.

TABLE 1
BRDF fitting comparison.

The table shows average BRDF fitting errors (RMSE×10−4) over all materi-
als for various reflectance models. The result of noise-free data is shown in the
first row, and the other rows are the results with variant levels of additive noise
besides quantization. The two parameters, µ (×10−7) and λ (×10−4), are
the weights for signal-independent and signal-dependent noise, respectively.

µ/λ Bicub. Biquad. Bilin. Laf. C.-T. Lamb.
No Noise 6.71 7.18 9.01 11.01 11.97 13.00

0/0 16.04 16.79 18.47 18.01 29.23 23.01
1/5 21.00 21.82 22.98 24.08 39.98 29.81
5/5 24.43 25.57 26.04 26.24 32.93 31.95
5/10 49.06 50.13 51.94 49.88 47.61 59.12
5/30 174.88 177.57 187.40 179.92 128.11 211.84
10/5 26.27 26.92 30.57 28.48 42.53 36.37

required to estimate the reflectance parameters. We have also
tested a higher-order bi-polynomial model, i.e., the biquartic
model. However, the performance gain was rather limited and
showed an almost identical error curve with the bicubic model
(which is omitted in Figure 5) with RMSE of 5.60 × 10−4.
Therefore, we limit our discussion to polynomials up to the
third order.

Note that the BRDF fittings here are performed using only
low-frequency reflectances. The modeling accuracy of the
bi-polynomial model will be deteriorated at high-frequency
reflectances for materials with specularity. In such a case, the
models with the specular terms such as the Cook-Torrance
model may outperform our model. We refer the readers
to [14] for evaluations of various parametric BRDF models
in the complete BRDF domain (both low-frequency and high-
frequency).

Evaluation using noisy data. The previous experiments are
performed using a carefully measured data (MERL BRDFs),
where a double precision is used for data storage. However,
in practical scenarios, the image formation process involves
various types of noise and quantization errors. Therefore, we
simulate these factors and evaluate their influences on the
performances of different BRDF models. Here, we consider
the additive noise and 16-bit image quantization4. We apply
both signal-independent and signal-dependent noise by adding
them to the original signal as ỹ = y + (µ + λ

√
y)X , which

is a commonly used noise model of an imaging sensor [53].
Here, ỹ and y are data with and without noise, µ and λ are
weighting factors for signal-independent and signal-dependent
noise, respectively, and X ∼ N (0, 1) is a random variable
following a Gaussian distribution with mean and standard
deviation of 0 and 1. To apply quantization, we first cap
the data with a lower bound 10−6 and an upper bound 1.0.
The capped data are then uniformly quantized to 216 levels.
The original data are first corrupted by additive noise before
performing quantization. We vary µ and λ to change the noise
levels (µ = λ = 0 indicates the case where only quantization
noise is applied).

The average BRDF fitting errors for noisy input are summa-

4. Usually, when dealing with the general BRDFs, HDR images are used
as done in [18], [39]. So we simulate 16-bit quantization instead of 8-bit LDR
images.
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Fig. 5. BRDF fitting comparison for various reflectance models and all materials in the MERL database. The Y -axis
shows the RMSE values; the X-axis shows BRDF names ordered by the fitting errors of the biquadratic model, with
some renderer spheres below for a visualization purpose.

rized in the second through seventh rows of Table 1. Compared
with the noise-free result in the first row, the errors become
larger with the increasing noise level as anticipated. The
bicubic model shows the best performance in the majority of
the cases, unless the noise is too strong (fifth and sixth rows).

5 APPLICATION TO REFLECTOMETRY

Although the bi-polynomial model is designed to represent
low-frequency reflectances, it can also be used for reflectome-
try of materials without significant specular spikes. Using the
linear representation of bi-polynomial model in Equation (4),
reflectometry under directional light sources only requires
solving a linear equation Ax = i, where i records radiance
values. For each observation, we can calculate the matrix A
from n, l, and v when the shape and lighting are all calibrated.
The matrix A has 4, 9 and 16 columns for bilinear, biquadratic,
and bicubic models respectively according to Equation (4). In
the biquadratic case for instance, from p (p > 9) independent
samples, the matrix A ∈ Rp×9 and observations i ∈ Rp×1

are constructed. The model parameter x can be determined by
simply solving the linear system as x = (A>A)−1A>i. If
only one image of a curved surface under a directional light
source is available, the reflectance shows only variations along
the half angle, our model reduces to a univariate function
as ρ(θh) '

∑k
i=0Ai(n

>h)i. In such a case, the estimated
reflectance only shows the variations along the half angle.

Reflectometry using measured BRDFs. To verify the
method, we select some materials from the MERL database
(e.g., fabric, matte-paint, rubber, etc.) that do not contain

strong specularities. We render a single image of a sphere
under a directional light source as input to estimate the
BRDF. We test this simple reflectometry method using various
parametric BRDF models (i.e., bilinear, biquadratic, bicubic,
Lafortune, Cook-Torrance, and Lambert). We then reconstruct
images under the same lighting and viewing directions using
the estimated reflectance parameters and evaluate the recon-
struction errors. The reconstruction errors are defined as the
mean of pixel-wise absolute difference.

Here we show the BLUE-FABRIC and GREEN-LATEX re-
sults as two examples in top two rows of Figure 6. We show
three rendered spheres using the ground truth BRDF, fittings
to the biquadratic model, and to the Lambert’s model for each
example. The ground truth and estimated BRDFs of various
models are visualized as 2-D polar plots. As summarized in the
legends of Figure 6, the reconstruction errors show a similar
performance ordering to the result in Figure 5 and Table 1,
where the bicubic model performs the best, and the Lambert’s
model performs the worst. From the plotted BRDF slices, we
can see that the bicubic and biquadratic models fit closely
to the measured data even though they only require a few
parameters. The biquadratic model is a little bit worse than the
bicubic model, but outperforms all other parametric models.
The bilinear model shows some inaccuracy, and is worse than
the Cook-Torrance model but better than the Lafortune model.
Notice that this experiment setting is slightly different from
that in Figure 5. Here, we fit the models to the complete
BRDF domain for materials without strong highlight, while
in Figure 5 we fit the models only to the low-frequency
component extracted by Tlow.
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Fig. 6. Reflectometry results. Top two rows are from
synthetic data, and the bottom row is from real data.
BRDF plots for all models and the rendered spheres using
measured data, the biquadratic model, and the Lambert’s
model are shown. The reconstruction errors (×10−4 for
top two examples,×10−2 for the bottom example) for each
model are summarized in the legends. Each BRDF is
visualized as a 2-D curve, which is a polar plot with angle
as the elevation angle of surface normal and radius as
the reflectance magnitude. The surface normal with zero
azimuth angle is selected for a visualization in 2-D.

Reflectometry using real data. We also test the BRDF esti-
mation capability using real data. A sphere under a directional
lighting is recorded. We show the result in the bottom row
of Figure 6, which is consistent with the synthetic test. The
bicubic model performs the best with a slight advantage over
the biquadratic model; modeling accuracy of the biquadratic
model is much better than the bilinear model, and is close to
the bicubic model. Higher-order bi-polynomial models, such
as bicubic and biquartic, show only negligible improvement
in our experiments, hence the biquadratic model is a good
trade-off in terms of modeling accuracy and simplicity.

6 APPLICATION TO PHOTOMETRIC STEREO

In this section, we apply the bi-polynomial reflectance model
to photometric stereo for estimating surface normals from

images captured by a fixed camera under varying lightings.
We assume an orthographic camera and directional lightings.
The camera-centered coordinate system is chosen such that
v = [0, 0, 1]>. To use the bi-polynomial model for photometric
stereo problems, we fit the reflectance model at each pixel
independently. Like previous methods that deal with spatially
varying BRDFs [18], our approach determines the BRDF for
each pixel from its intensity observations, lighting directions,
and estimated surface normals. Therefore, our method is able
to handle spatially varying BRDFs.

6.1 An iterative normal estimation method
The bilinear, biquadratic, and bicubic models can be used in
the same manner for solving photometric stereo. Here we use
the biquadratic model as an example. From the photometric
stereo images, we observe multiple radiance intensities at
each pixel. For each pixel, we first use a very small inten-
sity threshold (10−6 in our experiment for synthetic data)
to neglect shadows. Then we sort remaining observations
in an ascending order and keep only those ranked below
the percentage Tlow, which is empirically determined within
[15%, 50%]. We use ilow to denote the concatenated vector
of these remaining observations and stack their corresponding
lighting directions to form a matrix Llow. We finally obtain
the following equation:

ilow = ρ̄(n,Llow) ◦ (n>Llow), (15)

where “◦” indicates element-wise multiplication. ρ̄ encodes
the reflectance parameter x in the same manner as ρ̃
in Equation (6), but operates on each n and l. The re-
flectance parameter x represents the 9 polynomial coefficients
[C22, C21, · · · , C00]> for the biquadratic model, as defined in
Equation (7). We use the relaxed biquadratic model of E-
quation (6) for computational efficiency. Surface normal n
and the BRDF parameter x can be determined by iteratively
optimizing the following objective function:

(n∗,x∗) = argmin
n,x

|ρ̄(n,Llow) ◦ (n>Llow)− ilow|2. (16)

At each iteration, we first fix the normal direction n
and refine x by computing a linear least squares. We then
substitute x and n to determine ρ̄. Once ρ̄ is calculated, we
update n again by a linear least squares. A normalization
to unit-norm is performed immediately after each time n is
solved. To initialize this iterative optimization, we first apply
Lambertian photometric stereo [26] using ilow and Llow to
estimate the initial normal. The iterative optimization stops
when the residual of Equation (16) does not change. In our
implementation, we stop it when the change becomes less than
10−7 or a maximum iteration of 100 times is exceeded. The
normal estimation algorithm is summarized as Algorithm 1.
Note that we take the biquadratic model as an example in
Algorithm 1, and the ρ̄ can be replaced by other parametric
models. Theoretically, to optimize n with fixed x, minimizing
a multivariate polynomial system using Gröbner basis [54]
is one of the solutions. But through experimentation, we
find our simpler approach outlined above produces equivalent
convergence with much lighter computation.
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Fig. 7. Photometric stereo results comparison for various reflectance models and all materials in the MERL database.
The Y -axis shows mean angular errors (degree); the X-axis shows BRDF names ordered by the mean angular errors
of the biquadratic model, with some selected rendered spheres below for a visualization purpose.
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Fig. 8. Photometric stereo results using synthetic data. One of the input images is shown under the ground truth
normal map. Normal map estimates using different BRDF models are shown in the top row; the bottom row shows
angular difference maps w.r.t. the ground truth. The numbers on the difference maps show mean angular errors
(degree).

6.2 Surface normal estimation results

Using the above iterative solution method, we perform surface
normal estimation using the bi-polynomial model in compari-
son with other parametric BRDF models. For other parametric
BRDF models, such as the Cook-Torrance and Lafortune
models, we use the same iterative solution method for deriving
the surface normal (simply replacing ρ̄ with a designated
model). We use the same dataset as used in Section 4.2
and Tlow is set to 25%. Note that although the intensity
thresholding is applied in the same way, for photometric stereo
the BRDF fitting is performed for each pixel (intensity profile),
while for the experiment in Section 4.2 the BRDF fitting is
performed for all pixels with their corresponding lightings.

When the Cook-Torrance and Lafortune models are used, the
estimation of their BRDF parameters by fixing n becomes
highly nonlinear. This causes some numerical instability. A
similar issue arises when a high-order bi-polynomial model is
used (empirically, higher than cubic).

The results for all 100 materials are summarized in Figure 7
with mean errors listed in the first row of Table 2 as a
quantitative evaluation. Among all the tested models, the
biquadratic model performs the best on the average over 100
materials. The mean error from the bilinear model is larger
than the biquadratic case due to the model’s poor accuracy, and
the bicubic case also has larger errors than the biquadratic case
due to the instability caused by high-order polynomial fitting.
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Algorithm 1 Normal estimation
INPUT: Scene radiance values i, lighting directions L,
threshold Tlow.
for each pixel do

Extract ilow and Llow using Tlow;
Solve for initial n with ρ̄ as constant (Equation (15));
while resid. Equation (16) > 10−7 OR #iter. ≤ 100 do

Update ρ̄ by fixing n (e.g., Equation (6));
Update n by fixing ρ̄ (Equation (15));

end while
end for
OUTPUT: Estimated surface normal n for all pixels.

TABLE 2
Photometric stereo result comparison.

The table shows the mean angular errors (degree) of surface normal estimates
over all materials for various reflectance models. The result of noise-free
data is shown in the first row, and the other rows are the results with variant
levels of additive noise besides quantization. The two parameters, µ (×10−7)
and λ (×10−4), are the weights for signal-independent and signal-dependent
noise respectively.

µ/λ Bicub. Biquad. Bilin. Laf. C.-T. Lamb.
No Noise 1.25 1.12 1.37 4.07 2.13 2.14

0/0 1.42 1.34 1.58 4.17 3.18 2.28
1/5 1.48 1.39 1.60 4.17 3.19 2.28
5/5 1.85 1.81 1.98 4.30 3.40 2.46
5/10 1.98 1.94 2.03 4.33 3.43 2.49
5/30 2.79 2.68 2.35 4.55 3.69 2.73
10/5 6.38 6.57 6.56 6.47 6.13 5.04

For the Cook-Torrance and Lafortune models, their errors are
larger than the bi-polynomial model partly due to their lower
modeling accuracy of low-frequency reflectances. With only
having a Lambertian diffuse term, the Cook-Torrance model
hardly improves the accuracy from the initial result of the
Lambert’s model. In addition, these two nonlinear models
cause optimization difficulties, which also explains the larger
error of the Lafortune model.

Our model allows a simple alternating optimization while
other reflectance models require a more sophisticated opti-
mization technique due to their highly nonlinear nature. In
our experiments, the bilinear, biquadratic, and bicubic models
usually converge in a similar manner with fewer than 10
iterations. The Cook-Torrance model shows either a quick
convergence after one or two iterations, or shows no decrease
from the initial value, since its low-frequency term is the
same as the Lambert’s model. The Lafortune model shows
instability during the iterations, which is caused by both
the nonlinearity of the model and the simple optimization
technique that is employed. Though there is no theoretical
guarantee for the convergence in our optimization method, we
empirically find that this simple optimization technique shows
better convergence for our model than for other models.

Evaluation using noisy data. We evaluate the effect of
noisy input to photometric stereo estimates across different
parametric BRDF models. The noise is applied in the same
way as in Section 4.3. We summarize the mean angular
errors of photometric stereo across all materials for various

reflectance models by applying different noise levels in the
second through seventh rows of Table 2. The results are
generally consistent with the noise-free case (first row). When
the signal-dependent noise level is very strong (sixth row), the
bilinear model performs best due to its simpler form. As shown
in the seventh row when the magnitude of signal-independent
noise reaches the shadow threshold (10−6), all models show
worse performances than the initial results (Lambert). This
is because shadowed observations are mis-classified as low-
frequency reflectances and results in unpredictable errors.
Increasing the shadow threshold might solve this problem, but
how to choose the optimal threshold remains difficult.

Results on spatially varying BRDFs. We also generate syn-
thetic images with spatially varying BRDFs to show the photo-
metric stereo results. We use two different BRDFs, namely, the
BLUE-METALLIC-PAINT and GREEN-METALLIC-PAINT mate-
rials from the MERL database on a CAESAR model, and render
100 images under varying illumination as input. The estimated
normal maps and their angular errors are shown in Figure 8.
We linearly map x, y, z components of surface normal to the
R,G,B color channels, as indicated by a reference sphere
shown in the ground truth normal map. We add the results
of the traditional Lambertian photometric stereo [26] with all
images (“Lambert (all)”) for observing its failure mode on
those materials. By only using the low-frequency reflectance,
photometric stereo works much better on general reflectances
even using the Lambert’s model (“Lambert (low)”), thus it
can provide reasonable initial normals used for fitting all
other parametric BRDF models. The performance ranking of
models by mean angular errors here is consistent with Figure 7
and Table 2; the biquadratic model yields the most accurate
normal estimates.

6.3 Effect of varying numbers of lightings

We perform a similar experiment as Section 6.2 with varying
numbers of lighting directions (images) to observe its effect on
the accuracy. We vary the number of lighting directions from
25 to 250 with a step of 25, and perform photometric stereo
using various BRDF models. The threshold Tlow is fixed to
25% in this experiment. The mean angular errors over 100
materials of MERL database are plotted in Figure 95. Here
we do not compare with the Lafortune model because of its
unstable convergence. Generally, a larger number of images
improves the results. Compared with the Cook-Torrance mod-
el, the bi-polynomial model shows greater improvement on
accuracy with the increasing number of light directions, but
the Cook-Torrance model still shows a similar performance to
the Lambert’s model. When the number of lighting directions
becomes greater, the Cook-Torrance model even shows a
slightly worse result than the Lambert’s model due to its
numerical instability during the optimization. Note that in our
experiment, the fitting is performed using the low-frequency
reflectance data.

5. The biquadratic and bicubic models need at least 9 and 16 equations for
fitting, therefore their curves start from using 50 and 75 images, respectively,
when Tlow = 25%.
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Fig. 9. Angular error (degree) varying with number of
lightings. The numbers in the legend are the mean values
over X-axis. The “Biquad./noise” case corresponds to the
same noise level as the sixth row of Table 2.

With more input images, the low-frequency reflectances can
be more reliably extracted using Tlow. Therefore, regardless of
the orders of polynomials, the bi-polynomial results generally
become better as the number of input images increases.
Empirically, about 100 images are sufficient for photometric
stereo with the biquadratic model to produce accurate results
for general isotropic reflectance. On average, the angular error
becomes about 1◦ for the materials in the MERL database. The
major reason for requiring many images is that the method
involves the estimation of BRDFs, and it requires a sufficient
sampling resolution in the angular domain. Similar numbers
of images have been used for other state-of-the-art techniques
such as [18], [36], [42]. When there is noise in the input data
(curve “Biquad./noise” in Figure 9), the angular errors increase
in all settings of different numbers of input lightings, but in
general more lights yield higher accuracy.

6.4 Analysis on intensity threshold Tlow

Extracting the low-frequency reflectance observations plays an
important role in our BRDF modeling. We now analyze the
performance variation using various Tlow to see its influence
on the photometric stereo results.

Performance variation with diverse Tlow. Again, we perform
similar experiments as Section 6.2 and Section 6.3 with the
number of lighting directions fixed to 100. We plot the mean
angular errors of 100 materials with varying Tlow from 5% to
100% with a step of 5% in Figure 106. The overall tendency is
that all models show larger errors with increasing Tlow. This
shows that as more observations of high-frequency reflectances
are involved, the problem of photometric stereo becomes more
difficult. This observation agrees well with our motivation of
focusing only on the low-frequency reflectance. Degradation of
the Lambertian photometric stereo results with increasing Tlow
also influences the results of all other models, because they
all rely on the Lambertian photometric stereo for initialization.
For the Cook-Torrance model, we find that it performs very
similar to the Lambert’s model when Tlow is smaller than
30%, but it outperforms the bi-polynomial model when Tlow
is larger than 75%. For the latter case, the specularity becomes

6. The biquadratic and bicubic models need at least 9 and 16 equations
for fitting, therefore their curves start from using Tlow = 10% and 20%,
respectively, when 100 images are given as input.

25 50 75 100 125 150 175 200 225 250
0

1

2

3

4

Number of different lighting directions

A
ng

ul
ar

 E
rro

r i
n 

D
eg

re
es

 

 

Bicubic:1.37
Biquadratic:1.09
Bilinear:1.49
Cook-Torrance:2.31
Lambert:2.30
Biquad./noise:2.69

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Tlow  (%)

A
ng

ul
ar

 E
rro

r i
n 

D
eg

re
es

 

 

Bicubic:4.65
Biquadratic:4.16
Bilinear:4.76
Cook-Torrance:4.56
Lambert:5.53
Biquad./noise:5.17

Fig. 10. Angular error (degree) varying with Tlow. The
numbers in the legend are the mean values over X-axis.
The “Biquad./noise” case corresponds to the same noise
level as the sixth row of Table 2.

significant, and it becomes necessary to model high-frequency
components with explicit specular terms.

As for the difference between the bilinear, biquadratic,
and bicubic models, we find that the biquadratic model still
performs best on average across varying Tlow. However, when
Tlow is larger than 55%, the bicubic model improves due to its
greater representation ability. When Tlow is very small (below
20%), the bilinear model can be more stably estimated due to
its simpler form, and the reason here is similar to the increased
noise cases in the bottom three rows of Table 2. According
to Figure 10, a Tlow around 20% is a good choice for the
bi-polynomial model with ideal data.

When there is noise in the input data (curve “Biquad./noise”
in Figure 10), the angular errors increase accordingly. To
handle the input data with such large noise, a larger Tlow is
desired for obtaining the optimal performance. Fortunately, as
discussed above, our method is not sensitive to the choice of
Tlow in the range of [20%, 50%], therefore we can pick a Tlow
that could be larger than necessary.

What materials are (in)sensitive to Tlow? From Figure 10 we
can see that a Tlow below 50% is safe to use for various BRDF-
s. However, to determine the best Tlow for each material is not
easy in our empirical model. If we plot and check the curve of
angular errors varying with Tlow for each material, we can find
some material-related properties. We again take the biquadratic
model as an example and plot the curves in Figure 11. We
plot thin curves for all materials and use a thick curve for
their average in the same figure. Based on the shape of these
curves, we find that the materials can be categorized into two
groups according to the sensitivity of normal estimation error
to Tlow. The sensitive materials show a sudden increase of
errors when Tlow is greater than 50%, while the insensitive
materials show almost constant error curves. To check the type
of materials in each group, we look at the point of Tlow = 70%
and the corresponding materials with large and small errors.
We list the best nine and worst nine materials in Figure 11
with rendered spheres and material names. Interestingly, the
errors of metal-like materials are sensitive to Tlow and that of
fabric-like materials are insensitive. Our method is not suitable
for dealing with materials having relatively broad and strong
highlight, like some metallic paint. But when the highlight
is very focused or it is very weak, our method works well
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Fig. 11. Angular error (degree) varying with Tlow for the biquadratic model. Each thin curve represents the result of
one material; the thick red curve is the average of 100 materials. The materials in dark green and red frames are
insensitive and sensitive material examples to Tlow.

with relatively arbitrary selections of Tlow. This is consistent
with the above discussions, since wide and strong specularities
contain significant high-frequency reflectances which cannot
be easily discarded by Tlow, while spiky specular lobes are
easily separable.

6.5 Results using real-world data
We show the results of real-world data in Figure 12. We use
the biquadratic model, since it is found to be the optimal
one according to the synthetic test. We compare with the
method from Alldrin et al. [18] using their datasets in the
top three rows. We refer to these scenes as (from top to
bottom row) GOURD1 (102), GOURD2 (98), and APPLE (112),
with the number of input images in the paranthesis. Since
we do not have the ground truth of these data, a quantitative
evaluation cannot be performed. For a qualitative evaluation,
we reconstruct the surfaces using the estimated normals and
the method in [55]. In Figure 12, the left column shows one
of the input images to the photometric stereo algorithm and a
reference image (not used in calculation) of rendered results
from [18]. The middle and right columns show the estimated
surface normals and recovered surfaces using our method and
the Lambertian photometric stereo. The recovered surfaces are
aligned to the reference views, and our reconstruction agrees
closely with the result of [18]. The data in the bottom two
rows (named POST (91) and TEAPOT (73)) were captured with
a Sony XCD-X710CR camera with a linear response function.
While we did not carefully control exposures to avoid satura-
tion, our method can naturally skip undesired strong specular
and saturation regions by setting Tlow. The consistency of
the reconstructed surfaces using estimated normals with the
pictures of the objects taken from another viewpoint indicates
the effectiveness of the proposed approach.

7 CONCLUSIONS
We present the bi-polynomial reflectance model for repre-
senting low-frequency reflectances of isotropic surfaces. The

proposed reflectance model accurately captures the general
diffuse reflectance that spans in the low-frequency domain
in comparison with other parametric BRDF models and is
useful for inverse problems such as reflectometry and surface
normal recovery. We make comparisons with existing para-
metric models and demonstrate the usefulness of the proposed
BRDF model. We also discuss the choices of different orders
of polynomials, and conclude that the biquadratic model is
generally the most suitable. The current model is limited to
isotropic materials. In future work, we hope to analyze the
characteristics of the low-frequency component of anisotropic
reflectance and extend our bi-polynomial model to a wider
variety of materials.
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