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Abstract—Photometric stereo using unorganized Internet
images is very challenging, because the input images are cap-
tured under unknown general illuminations, with uncontrolled
cameras. We propose to solve this difficult problem by a simple
yet effective approach that makes use of a coarse shape prior.
The shape prior is obtained from multi-view stereo and will
be useful in twofold: resolving the shape-light ambiguity in
uncalibrated photometric stereo and guiding the estimated
normals to produce the high quality 3D surface. By assuming
the surface albedo is not highly contrasted, we also propose a
novel linear approximation of the nonlinear camera responses
with our normal estimation algorithm. We evaluate our method
using synthetic data and demonstrate the surface improvement
on real data over multi-view stereo results.
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I. INTRODUCTION

Shape recovery is a fundamental problem in computer
vision. Over the past decade, both the capturing devices and
3D reconstruction algorithms have been improved drastically
that brings surface reconstruction from small scale desktop
objects to large scale outdoor sculptures. Given multiple
images of the same large scale object, for which Internet
is an important image resource, recent progress in structure
from motion (SfM) and multi-view stereo (MVS) allow
reconstruction even up to city scale. There are existing works
that recover sparse 3D points [1] and depth map [2] for large
scale objects using Internet images. These works focus more
on acquiring the rough depth using geometric constraints
rather than high quality surface.

Photometric stereo, on the other hand, can recover highly
detailed surface geometry at pixel-level accuracy in the form
of surface normal map, by using scene radiances observed
under varying lightings [3]. Recently, photometric stereo in
an outdoor setting is possible by using a mirror sphere to
calibrate the natural illumination [4]. However, for Internet
images the natural illumination is completely unknown.

When the lighting conditions are unknown, the problem
becomes uncalibrated photometric stereo, whose solution
can only be derived up to some ambiguity, such as the
generalized-bas-relief (GBR) ambiguity [5] for unknown
directional lightings, or a high-dimensional linear ambigui-
ty [6] for unknown general lightings. Besides the unknown
illumination, uncontrolled sensor is another difficult issue

since automatic gain control and nonlinear radiometric re-
sponse deteriorate the resultant shape. Therefore in most of
the previous photometric stereo approaches, sensor gains
and responses are either pre-calibrated or assumed to be
known; however, sensor parameters are usually inaccessible
in Internet images.

In this paper, we focus on Internet images of large outdoor
sculptures which are difficult to capture by Lidar or flying
drone due to their size or security reason. We propose a
unified approach by using the shape prior – coarse shape
information obtained by SfM and MVS – to show its im-
portant roles in various steps throughout the whole pipeline:
from preparing the organized input images for photometric
stereo, resolving the ambiguity in uncalibrated photometric
stereo to guiding the final surface reconstruction. We also
show that the effect of nonlinear sensor responses can be
approximated by a high-dimensional linear transformation
applied over the illumination component except for highly
contrasted albedos. This can be viewed as pseudo multiplex-
ing of natural lightings which allows highly accurate shape
estimation without the influence of nonlinear responses of
sensors. The key contribution of this paper is to extend
photometric stereo method to work with a wild setting of
unknown general illumination and uncontrolled sensors on
unorganized Internet images.

II. RELATED WORK

The Internet images contain comprehensive contents for
the same place of interest from various viewpoints and
illuminations. Considering the geometric constraint from
multi-view images, recent progress in SfM and MVS show
that sparse yet reliable 3D points can be recovered from
Internet images [7], [1], [8]. In more recent works, Shan
et al. [9] propose a large scale system combining Internet
photos from many resources (ground-level, aerial images,
and street view) for realistic reconstruction, and Zheng et al.
[2] propose a multi-view depth estimation method with con-
sideration of pixel-level view selection. By integrating the
photometric cues, Shen and Tan [10] obtain sparse normals
that are useful for weather estimation. Ackermann et al. [11]
apply MVS using Internet images to compute sparse surface
normals and transfer them to images under varying lightings
for estimating dense normal. By using Internet face photos
as a shape prior and combining shading constraints from
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Figure 1. Pipeline of our method, which contains 6 main steps. We take unorganized Internet images as input to first generate a shape (normal) prior,
which is then used to produce high quality surface reconstruction with great details.

photometric stereo, the 3D face models can be reconstructed
in the wild [12].

The Internet images are highly unorganized and cap-
tured in an uncontrolled setup. To apply photometric stereo
on Internet images, the uncalibrated lighting needs to be
estimated. For uncalibrated photometric stereo, it is well
known that there exists a 3× 3 linear ambiguity [13] in the
recovered surface normals for general surfaces, and a three-
parameter GBR ambiguity for integrable surfaces [5]. Recent
works mainly focus on estimating the three unknowns to
obtain final normal estimates (e.g., [14]). Under a general
unknown lighting, there is a 9× 3 (= 27 unknowns) linear
ambiguity in surface normals under illuminations modeled
by second order spherical harmonics. Unfortunately, this
high-dimensional ambiguity cannot be completely removed
without additional information [6]. We propose to resolve
this ambiguity by using the shape prior.

Another challenging issue for Internet images is that
the sensors are uncontrollable and their parameters are
inaccessible, so methods that require controlled exposure
time (e.g., [15]) are unsuitable to calibrate the radiometric
response for linearizing Internet images. Self-calibration to
radiometric response can be applied for directional light-
ing [14] or directional plus ambient lighting [16], but for
natural lighting and uncontrolled sensors it is still an open
problem. Instead of explicitly estimating the response func-
tion, we disregard it in a self-contained pipeline.

III. PROPOSED METHOD: OVERVIEW

The main challenges of solving photometric stereo using
Internet images are uncontrolled illuminations and sensors.
The first problem can be formulated as an uncalibrated
photometric stereo with general unknown lightings, and the
latter one is to deal with unknown exposures and radiometric
responses. We tackle these two problems by taking advan-
tages of a coarse shape prior.

The complete pipeline of our method is shown in Fig. 1.
We collect Internet images of an outdoor sculpture and apply
SfM [7] (Step 1) and PMVS [8] (Step 2) to obtain sparse
point clouds. Then a Poisson reconstruction method [17] is
used for creating a water-tight coarse depth prior. Based on
the depth prior we align multiview images to the reference
view via 3D warping (Step 3) to prepare the input for
photometric stereo. A mask is added manually to exclude the
sky. Note that in Fig. 1, the Internet images are unorganized
pictures from multiple viewpoints, but the registered images
contain the object from exactly the same viewpoint and
varying natural illumination.

From the shape prior which is a rough depth map, we first
convert it to a rough normal map that gives us the normal
prior (Depth to normal, Step 4). The normal prior and reg-
istered images are then combined to solve the uncalibrated
photometric stereo (Step 5) problem. Finally, the estimated
normal and shape prior are integrated to produce the final
3D surface (Depth Normal Fusion, Step 6) which has more
details due to the accurate normal information.

In the next section, we will explain the details of solving
the uncalibrated photometric stereo problem with the shape
prior, i.e., Step 4-6, especially Step 5; after that, we will
explain how the shape prior helps to relieve the uncontrolled
camera issue in Sec. V.

IV. NORMAL ESTIMATION FROM INTERNET IMAGES

A. Depth to normal

Since our method works in the surface normal domain,
we first convert the coarse depth prior into a surface normal
prior for solving our problem (Step 4). A naı̈ve computation
of derivatives over a coarse depth map results in a noisy
normal map; therefore, we use a plane principal component
analysis method introduced in [18] for robustly computing
the surface normal prior. Given the depth map and camera
intrinsics of the reference view, the method first projects the



depth map to 3D points in the world coordinate system. For
each 3D point, the method groups a set of points within
a short distance d. For the i-th group that contains qi 3D
points, by stacking them in a matrix Q ∈ Rqi×3, the surface
normal is computed as

ñ = argmin
n
‖(Q− Q̄)n‖F, (1)

where Q̄ ∈ Rqi×3 is a matrix containing the centroid of
Q in all the rows. A larger d produces a smoother normal
estimate when the input depth contains more noise. The
calculated normals are then projected back to the image
plane of reference view. This step produces the normal prior
Ñ ∈ Rp×3 where p is the number of foreground pixels in a
registered image.

B. Uncalibrated photometric stereo

1) Image formation model: We begin Step 5 with a
Lambertian image formation model under natural lightings.
Given a scene point with Lambertian albedo ρ and surface
normal n = [nx, ny, nz]>, its radiance r can be written as:

r =

∫
Ω

ρL(ω) max((n>ω), 0)dω, (2)

where ω ∈ R3×1 is a unit vector of spherical directions Ω,
and L(ω) is the light intensity from the direction ω. This
integration can be approximated using spherical harmonics
as

r = s>l, (3)

where s = [s1, s2, . . . , sk]> ∈ Rk×1 are harmonics images
of surface normal n and albedo ρ, and k is the number of el-
ements determined by the order of spherical harmonics. The
vector l ∈ Rk×1 is the k-dimensional lighting coefficients.

Given p pixels observed under q different illuminations,
we store all these p × q radiance values into a radiance
matrix R ∈ Rp×q . By a row-wise stacking of p transposed
harmonics images s> in a shape matrix S ∈ Rp×k and a
column-wise stacking of q lighting coefficients l in a lighting
matrix L ∈ Rk×q , Eq. (3) can be written in a matrix form
as:

R = SL. (4)

We further include the effect of sensor gains and responses
in the image formation model. Under varying illumination,
the exposure time for each image is likely different for an
uncontrolled sensor. Each exposure time corresponds to a
scaling of its lighting coefficient l, which is one column
in the lighting matrix L. For simplicity of notations, we
still use L to represent the scaled lighting coefficient matrix.
In addition, a nonlinear response function transforms the
radiance R. Let us denote the camera’s radiometric response
as f . For now, we assume the response function f is the
same for all images. The registered images are vectorized

and stacked together in a column-wise manner to form the
observation matrix I ∈ Rp×q . I can be expressed using the
response function f , which is applied in an element-wise
manner using an operator ◦, as:

I = R ◦ f = (SL) ◦ f. (5)

Our method approximates the nonlinear response function
f using a high-dimensional linear transformation F ∈ Rq×q

as

I = (SL) ◦ f ≈ SLF. (6)

The transformation F varies with the response function f
and radiance R. We will explain and verify the appropri-
ateness of this approximation in Sec. V. Since our goal is
to estimate the shape component S, we rewrite Eq. (6) as
I = SLF by LF = LF so that the illumination component
embeds the transformation caused by response functions.

2) Normal estimation algorithm: Similar to previous ap-
proaches [13], [6], we perform the singular value decomposi-
tion (SVD) on the observation matrix I to estimate the shape
matrix S up to a linear ambiguity B ∈ Rk×k. In other words,
the ambiguous S̃ and L̃F are related to their ground truths
S and LF by S̃B = S and B−1L̃F = LF , respectively.
As discussed in [6], the surface normal is encoded in the
second to fourth columns of S̃. Therefore, a k×3 matrix A
is sufficient for computing normal from S̃ as S̃A.

Given the coarse normal prior Ñ from Step 4, we can
estimate A to remove the ambiguity:

Â = argmin
A

‖S̃A− Ñ‖F, (7)

By applying Â to the original S̃, we obtain disambiguated
normals N̂ by N̂ = O(S̃Â), where O is a row-wise
normalization operator forcing each row of the matrix to
be a unit vector. In practice, we apply Gaussian smoothing
to both Ñ and the ambiguous shape matrix S̃ before solving
for Â.

Solving Eq. (7), however, can only provide a correct
solution if the object’s albedo is uniform. When a scene
contains variant albedos, the norm of rows of S̃Â varies,
while Ñ only contains unit normal vectors. To explicitly
handle the albedo variations, we further optimize A using
the following objective function:

A∗ = argmin
A

‖O(S̃A)− Ñ‖F. (8)

The above optimization problem is highly nonlinear, but we
can use the linear solution Â as an initial guess to solve
for A. The optimization is solved using a Matlab build-
in function “fminsearch”. While the global optimum is not
guaranteed, in our experiments this nonlinear refinement
works well because of the good initialization. The final
surface normal is computed by N∗ = O(S̃A∗).

The complete normal estimation method (Step 5) is sum-
marized in Algorithm 1.



Algorithm 1 Normal estimation with shape prior

1: Decompose observation matrix I as I = S̃L̃F ;
2: Solve the linear equations for Â using Eq. (7);
3: Nonlinear refinement to obtain A∗ using Eq. (8);
4: Compute normal by N∗ = O(S̃A∗).

C. Depth normal fusion

The shape prior is beneficial not only for surface normal
estimation, but also for surface reconstruction (Step 6) by
serving as anchor points for the surface recovery from the
normal map [19], [20], [21]. To estimate the optimal depth
Z∗ ∈ Rp×1 by combining the estimated surface normal N∗

(Step 5) and a vectorized noisy depth map Z ∈ Rp×1 (Step
1 and 2), we can form a linear system of equations as [19]
to reconstruct the surface:[

λId
∇2

]
[Z∗] =

[
λZ
∂N∗

]
, (9)

where ∇2 is a Laplacian operator, Id is an identity matrix
and λ is a weighting parameter controlling the contribution
of depth constraint. ∂N∗ is the stacks of − ∂

∂x
nx

nz
− ∂

∂y
ny

nz
for

each normal n ∈ N∗. While it forms a large linear system
of equations, because the left matrix is sparse, it can be
efficiently solved using existing sparse linear solvers (e.g.,
QR decomposition based solvers), or multigrid techniques.

V. LINEAR APPROXIMATION OF SENSOR RESPONSES

A useful byproduct of our pipeline is that by using the
shape prior, our method naturally ignores the nonlinear
response functions embedded in Internet images. This is
another challenging issue of using Internet images for photo-
metric stereo, due to that for each input image the nonlinear
response function is unknown and arbitrary. Further, the
uncontrolled cameras used for recording Internet images
bring difficulty in performing radiometric calibration using
conventional methods [22]. We address this challenge using
a practical approximation by aligning the shape estimates
with the shape prior and encoding the unknown responses
to a linearly multiplexed lighting component.

A. Intuition

The shape estimation method in Sec. IV relies on a high-
dimensional linear approximation of nonlinear responses
(Eq. (6)), which allows us to separate the effects of unknown
sensor gains and responses from the shape estimation as
I = S(LF). The resulting lighting component LF (= LF)
becomes different from the actual L. However, it is a linear
combination of the original lightings, and it can be viewed as
pseudo multiplexing of natural lightings, which allows us to
effectively account for unknown sensor responses. Intuitively
speaking, for each image, the pseudo multiplexing can be
explained as such a process: A uniform surface is illuminated
by a natural illumination l and captured via a nonlinear

response function f that maps r = Sl to i = r ◦ f ; the
observed image is approximately equal to that of the same
surface illuminated by lF (one column of LF ) and captured
with a linear camera, i.e., i = SlF .

Qualitatively, the linear approximation becomes less ac-
curate when a surface contains more diverse albedos. For
example, consider two surface points that have the same
normal n but different albedos ρ1 and ρ2 (ρ1 6= ρ2). With
a little bit abuse of notations, we use s = ρn for simplicity
1. The radiance at these two points are r1 = s>1 l =
ρ1n

>l and r2 = s>2 l = ρ2n
>l, respectively. A camera

response function maps these radiance values to f(r1) and
f(r2). Since f is a nonlinear function, generally, the ratio
f(ρ1n

>l) : f(ρ2n
>l) becomes different from ρ1 : ρ2.

However, the linear approximation is limited in representing
this nonlinear effect, and this error becomes more obvious
as the difference between ρ1 and ρ2 becomes larger.

For our method, it is not necessary to estimate the
multiplexing matrix F; however, the approximation power
of the linear transformation F is of interest because it
is related to the shape estimation accuracy. We therefore
assess the appropriateness of the approximation using the
database of measured response functions [15]. Fortunately,
as we will see below, the approximation error is consistently
and sufficiently small for the real world response functions
even for variant albedos, due to the high regularity of real
response functions and good approximation capability of
high-dimensional linear multiplexing.

B. Verification

We use synthetic images 2 to assess the approxima-
tion ability. We simulate the imaging process where f
is applied to R in two different manners: 1) “Nonlinear-
fixed”: the same response is applied to all images under
varying illuminations. This case corresponds to a scenario
with an uncontrolled camera. And, 2) “Nonlinear-random”:
each image under one lighting condition is distorted by a
randomly selected response function in the database. This
case more closely mimics Internet images, where each image
is recorded via a distinct unknown and nonlinear response.
We average the results over all 201 response functions in
“Nonlinear-fixed” case, and 201 random trials are performed
and averaged for “Nonlinear-random” case. The test scene
consists of two spheres with different albedos, whose values
are shown at bottom of Fig. 2.

To assess the approximation ability, we evaluate the recon-
struction error of Eq. (6). Given R and I, we solve for F by
linear least squares as F̂ = R+I, where R+ is the pseudo-
inverse of R. Then, a reconstruction of RF is computed

1Strictly speaking, s1 = ρ, s2 = ρnx, s3 = ρny , s4 = ρnz , s5 =
ρ(3n2

z − 1), s6 = ρn2
x, s7 = ρnxnz , s8 = ρnynz , s9 = ρ(n2

x−n2
y) for

a second order spherical harmonics representation.
2We use a 9D spherical harmonics expansion of both normal and lighting

to create these images.
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α = 1                α = 2                 α = 3                α = 4                α = 5

Figure 2. Reconstruction errors of Eq. (6) w.r.t. varying numbers of
images (q) for scenes containing two spheres with different albedos.
α = {1, 2, 3, 4, 5} indicate that left/right spheres have albedo values of
{0.5/0.5, 0.4/0.6, 0.3/0.7, 0.2/0.8, 0.1/0.9}.

as RF = RF̂. The reconstruction error is evaluated as the
mean of |i− rF |/i, where i is a pixel observation of I and
rF is the corresponding element in RF . This is a relative
error (percentage) defined for each observation. We show the
reconstruction errors with respect to the varying numbers of
input images q and albedo contrast in Fig. 2. The errors are
pretty low (about 1%) when the number of input images q
becomes q ≥ 9 for the case of uniform albedo (α = 1).
On the other hand, as the albedo contrast becomes greater,
the errors increase accordingly. Except for the extreme case
(α = 5) 3, the reconstruction errors are consistently low
(below 5%). Therefore, the approximation generally works
well, except for scenes that exhibit significantly high con-

3α = 5 mimics a scene of almost black and white spheres.

trast. The high correlation of different radiometric response
functions makes our method works for both “Nonlinear-
fixed” and “Nonlinear-random” cases (their reconstruction
errors are always similar), i.e., our approximation is valid
for Internet images.

As an intuitive example, we show linearly approximated
images of uniform abledo (α = 1, top row) and strong
contrast case (α = 5, bottom row) in Fig. 3. Note that i
and rF have very small difference visually, especially for
uniform albedo case, which shows the validity of our linear
approximation.

VI. EXPERIMENTS

A. Quantitative evaluation

We use a synthetic scene, CAESAR, to quantitatively
evaluate our method. The data is synthesized in the same
way as the simulation test did in Sec. V-B. We fix the number
of distinct lightings q = 40 for this test. We evaluate how
the varying albedo contrast and coarseness of shape prior
influence the normal estimates given nonlinear images, by
applying various real-world response functions [15] to input
images. We found that our method works well for most
albedo variations except for the highly contrasted one, and
even a severely contaminated shape prior is quite useful
in estimating accurate normal. We provide the complete
analysis in the supplementary material.

Here, we show a typical example in Fig. 4. In this
example, a severely contaminated depth map, quantized to
4 bits with zero-mean Gaussian of standard deviation 0.04
being added, is used as shape prior. The normal estimation
accuracy is evaluated using angular difference (degree) w.r.t.
the true normal. With a noisy normal prior of angular
error 21.3◦, we obtain a normal map with much smaller
errors, which is about 14◦ smaller than the prior. The
surface reconstruction error is defined as the mean value
of |z0 − z∗|/z0 across pixels, where z0 is the true depth
and z∗ is the depth estimate. The original rough depth
(Shape prior) is noisy, but it still provides useful positional
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Figure 4. Surface normal estimation (top row) and surface reconstruction
result (depth and surface in two bottom rows) using synthetic data. The
numbers on normal maps show the angular errors and the numbers on
surfaces show the reconstruction errors.

information. On the other hand, direct integrating a surface
from the normals results in a distorted reconstruction with a
larger bias (Normal integ.). By fusing the normal and depth
information, a more accurate surface can be reconstructed
(Fusion), as pointed out by previous work [19].

B. Result using Internet images

In addition to the KAMAKURA BUDDHA data shown
in Fig. 1, we show results of three more scenes named
MOTHERLAND CALLS, STATUE OF LIBERTY, and MOUNT
RUSHMORE in Fig. 5. These four datasets contain 200, 109,
320, and 128 downloaded images respectively, which are
used for SfM and MVS. We use 163, 109, 63, and 42 images
in each dataset which roughly have the same viewpoints for
3D warping and normal estimation. We model the natural
illumination using the third order spherical harmonics (k =
16) for all the experiments. We compare our method to [11]
by using the same input for reference. Our normal estimates
show more meaningful shape information than the results
from [11], because of the capability of handling natural
lightings and variations of camera responses. For example,
in the pedestal of STATUE OF LIBERTY, our result shows
consistent normals for plane structures and clearer details
of the bricks. We also show the reconstructed surfaces by
fusing our estimated normal and the shape prior from MVS

Shape prior                                                                           Our result

Shape prior Our result

Figure 6. 3D reconstruction results using Internet images. Close-up views
are indicated by red rectangles.

(as baseline for surface reconstruction comparison) in Fig. 6,
where more details can be observed thanks to the refined
surface normals by photometric stereo.

When the Internet images have almost the same view-
points, SfM and MVS will produce degenerated results. But
if a scene contains (partly) regular shapes, we can directly
use this knowledge as the shape prior. We show such an
example of TAJ MAHAL where the shape of the dome has a
comprehensive structure. We manually assign a hemisphere
surface normal map to the dome part as the shape prior. The
Internet images of TAJ MAHAL are registered to a reference
view via homography using SIFT [23] features in this case,
as the 3D shape information is unavailable. The result using
66 images is shown in Fig. 7. The rendered Lambertian
shading using the estimated normal under a distant lighting
[ 1√

3
, 1√

3
, 1√

3
]> is shown on the rightmost for verification.

VII. CONCLUSION

We present a photometric stereo method that works with
unorganized Internet images, captured under general un-
known illumination, with uncontrolled sensors. We suggest
using shape priors from SfM and MVS to fully remove
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Figure 5. Surface normal estimation results using Internet images. Four representative images from the input dataset are shown in the leftmost column,
with the image on top left is the reference image to which other images are registered. Other columns show normal prior, normal estimated by our method
and [11], respectively. Close-up views of estimated normal maps are indicated by red rectangles.

the ambiguity in uncalibrated illumination setting, to guide
the normal to surface integration, and to avoid the effect
of uncontrolled sensor. The proposed method shows high-
quality 3D modeling over existing MVS method.

Limitations: In our current solution, cast shadows are
not handled. Due to the shape-light ambiguity, it is difficult
to explicitly calculate the visibility map like [24]. We
have investigated some robust algorithm [25] to handle cast
shadows as outliers by forcing the input matrix to be rank-k.
However, the result showed almost no improvement in our
context, because the ideal rank-k matrix is seldom observed

for Internet images. Properly modeling cast shadows in our
pipeline is left as our future work. With recent progress on
SfM and MVS techniques, it is possible to obtain finer shape
priors. Combining our method with better shape priors using
Internet images, which consider large scale data [9] and view
selection [2], is also an interesting direction.
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Figure 1. Normal estimation accuracy (angular error in de-
grees) w.r.t. different albedo contrasts. α = {1, 2, 3, 4, 5} in-
dicate that left/right half of the object have albedo values of
{0.5/0.5, 0.4/0.6, 0.3/0.7, 0.2/0.8, 0.1/0.9}. Two different dimensions
of lighting coefficients k are evaluated.

I. EFFECT OF ALBEDO CONTRAST

We evaluate the effect of albedo contrast to normal
estimation accuracy. To exclude other factors except for
nonlinear sensor responses, in this we use the ground truth
normal as Ñ to remove the ambiguity. Figure 1 shows the
normal estimation accuracy with respect to varying albedo
contrast α for different dimensions of lighting coefficients k.
As we have observed in Sec. 5, the accuracy is affected by
the greater albedo contrast in general, and the errors become
smaller with a larger k. This indicates that the higher-order
lightings make the pseudo multiplexing more effective. The
“Nonlinear-fixed” cases show larger errors than “Nonlinear-
random” cases due to large errors caused by some response
functions in unusual shapes that are difficult to approximate.

II. EFFECT OF NOISE IN SHAPE PRIORS

Figure 2 shows the variation of normal estimation errors
with different noise levels in shape priors. The input depth
values are quantized to 3 bits in the worst case, and Gaussian
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Figure 2. Normal estimation accuracy (angular error in degrees) w.r.t.
varying noise levels in shape priors. β = {1, 2, 3, 4, 5} are labels
to represent corruptions where the clean depth maps are quantized to
{8, 6, 5, 4, 3} bits, with zero-mean Gaussian noise of standard deviations
{0.02, 0.03, 0.04, 0.04, 0.05} added. Two different dimensions of lighting
coefficients k are evaluated.

noise with standard deviations up to 0.05 is further added in
order to simulate the real-world shape priors. The computed
surface normal priors have errors from about 13◦ to 25◦.
In this test, the albedo is set as uniform to remove the
effect from albedo variations. The errors increase with the
roughness of the shape priors. Except for the extreme case
(β = 5), the normal estimation accuracy is consistently high
even with nonlinear responses. Under severe noise, a large
k lowers the normal estimation accuracy, because it allows
too much freedom in the ambiguity matrix, which makes the
solution sensitive to noise. In practice, k should be adjusted
according to the tradeoff between nonlinearity of responses
(prefers a larger k) and the coarseness of shape prior (prefers
a smaller k).
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