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Abstract

This paper presents a photometric stereo method based
on deep learning. One of the major difficulties in photomet-
ric stereo is designing can appropriate reflectance model
that is both capable of representing real-world reflectances
and computationally tractable in terms of deriving sur-
face normal. Unlike previous photometric stereo meth-
ods that rely on a simplified parametric image formation
model, such as the Lambert’s model, the proposed method
aims at establishing a flexible mapping between complex
reflectance observations and surface normal by the use of a
deep neural network. As a result we propose a deep photo-
metric stereo network (DPSN) that takes reflectance obser-
vations under varying light directions and infers the corre-
sponding surface normal per pixel. To make the DPSN ap-
plicable to real-world objects, a database of measured bidi-
rectional reflectance distribution functions (MERL BRDF
database) has been used for training the network. Evalu-
ation using simulation and real-world scenes shows effec-
tiveness of the proposed approach over previous techniques.

1. Introduction
Photometric stereo estimates surface normal of an object

from a set of measurements that are observed under differ-

ent light conditions. The basic idea of photometric stereo

was introduced in 1980s by Woodham [25] and Silver [22]

based on the Lambertian reflectance assumption [13]. To

make photometric stereo applicable to real-world objects, it

is of interest to use a more flexible reflectance function, for

which in a general form it is represented by bidirectional

reflectance distribution functions (BRDFs).

While the image formation model with a BRDF repre-

sentation has greater flexibility and representation power,
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it is known difficult to directly work with general non-

parametric BRDFs in the context of photometric stereo. To

ease the problem, there have been studies to use paramet-

ric representations to approximate BRDFs. However, so

far, known parametric models have been only accurate for

a limited class of materials, and the solution methods suf-

fer from unstable optimization, which prohibits obtaining

accurate estimates. Thus, it is needed to develop a photo-

metric stereo method that is both computationally tractable

and capable of handling diverse BRDFs.

To achieve this goal, we propose an end-to-end learning

approach to photometric stereo using a deep neural network

(DNN). The proposed method, which we call a deep photo-

metric stereo network (DPSN), uses a DNN for establishing

a flexible mapping from reflectance observations to surface

normal. To make the DPSN applicable to diverse real-world

materials, a database of measured BRDFs (MERL BRDF

database [14]) has been used for training the network. In

addition, we propose a shadow layer that accounts for the

non-local shadowing effect using a dropout strategy.

In our method, we assume that the light directions are

pre-defined and remain the same between training and pre-

diction phases, which is the case in many photometric stereo

apparatuses. The DPSN operates in a per-pixel manner, by

taking reflectance observations of a surface point (corre-

sponding to a certain pixel) under varying light conditions,

and infers the surface normal of the point. The result shows

the effectiveness of our method validated using both simu-

lation and real-world images.

2. Related work
Conventional photometric stereo [25, 22] is based on

the Lambert’s reflectance model. Because the Lambert’s

model is an ideal reflectance model that may not represent

well real-world reflectances, extending photometric stereo

to work with non-Lambertian surfaces has been of interest

for its practical use. Existing studies on non-Lambertian

photometric stereo can be classified into three categories.

The first category is methods based on robust estima-
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tion, where the non-Lambertian reflectances are treated as

outliers. They assume that the majority of reflectance ob-

servations obeys, or is close to, the Lambert’s model so

that the non-Lambertian reflectances, such as specular re-

flections, can be regarded as anomalies. Wu et al. [26] for-

mulate the robust estimation problem as rank minimization.

They exploit the fact that the Lambertian observations form

a low-rank subspace [2] and treat the non-Lambertian re-

flectances as sparse outliers. Mukaigawa et al. [16] use the

random sample consensus (RANSAC) scheme for discard-

ing outliers, which essentially approximates the �0 residual

minimization. Other robust estimation methods, such as ex-

pectation maximization [27], taking the median values [15],

�1 residual minimization and sparse Bayesian learning [10],

are also shown effective for dealing with sparse outliers.

Since the robust estimation methods are built upon statis-

tical outlier rejection, they generally require a lot of input

images, e.g., 40 images in [26], recorded under distinct light

directions.

The second category is methods based on more sophisti-

cated reflectance models than the Lambertian model to bet-

ter approximate non-Lambertian reflectance observations.

Georghiades [4] uses the Torrance-Sparrow model [24], and

Ruiters et al. [18] use Cook-Torrance model [3] in pho-

tometric stereo. More recently, Shi et al. [20] propose

a bi-polynomial BRDF model, which is capable of repre-

senting low-frequency non-Lambertian reflectances, and it

shows greater accuracy in surface normal estimation. Hol-

royd et al. [8] propose another approach for generalizing

reflectance properties based on the reflective symmetry of

the halfway vector across the normal-tangent and normal-

binormal planes, which does not require estimating a sur-

face reflectance model, and performs well on anisotropic

reflectance surfaces.

The third category is example-based methods, which de-

termines surface normal with reference objects. Hertzmann

and Seitz [6] propose an example-based method using a ref-

erence sphere that has the same reflectance as the target ob-

ject. From the observations that are consistent between the

target and reference objects, their method determines the

surface normal of the target object by simply mapping the

corresponding one from the reference object. The example-

based method naturally avoids solving a complex optimiza-

tion problem, but it requires a reference object, of which

the shape is known and reflectance is the same as the target

object.

Our method is somewhere between the second and third

categories. As with the methods in the second category, our

method is able to deal with diverse BRDFs. Instead of esti-

mating both the BRDF parameters and surface normal in the

previous approaches, our method directly establishes map-

pings from reflectance observations to surface normal using

a deep learning framework. Our DPSN is trained using a

database of measured BRDFs of various materials (MERL

BRDF database [14]); therefore it shares the spirit of the

example-based methods in the third category, while DPSN

does not require a reference object to be placed together

with the target object.

3. Preliminaries
When a Lambertian surface with albedo-scaled surface

normal n ∈ R
3 is illuminated by a directional light l ∈ R
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the measurement m ∈ R+ can be described as

m = l�n.

For a vector of measurements m ∈ R
f
+ observed under f

distinct light directions, the above equation can be written

with a light matrix L = [l1, . . . , lf ] ∈ R
3×f as

m = L�n.

The conventional photometric stereo method [25, 22] deter-

mines the surface normal n using the above image forma-

tion model by

n∗ = L−1m,

when f = 3 and rank(L) = 3, or, with more than three

distinct observations, a least-squares approximate solution

n∗ can be obtained by a pseudo-inverse of L as

n∗ =
(
LL�)−1

Lm.

Unfortunately, a pure Lambertian surface rarely exists in the

real world; therefore, making photometric stereo work with

non-Lambertian surfaces is one of the major interests for its

practical use.

With a BRDF function ρ, the appearance of a surface un-

der a local illumination model can be described more flex-

ibly. The appearances of a surface observed from a fixed

viewing direction v under varying distant light directions L
can be written as

m = b ◦ (L�n),

where b ∈ R
f
+ is a vector of reflectances sampled from the

BRDF function ρ as b = ρ(L,n,v), and the operator ◦ rep-

resents element-wise multiplication, and
(
L�n

)
represents

the irradiances at the surface point under the corresponding

light directions.

The above equation assumes a shadow-free world, while

in the real-world the surface patches facing away from the

lighting direction are in attached shadow and light path be-

ing occluded causes cast shadow. Such shadowing pro-

cesses can be written as

m = s ◦ [b ◦max(L�n,0)
]
, (1)

1Throughout this paper, we assume ‖l‖2 = 1 and the input image has

been normalized by its corresponding light intensity.
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Figure 1. Overview of the proposed network. It consists of two

components, the shadow layer and fully connected layers. In the

shadow layer, some of the measurement vector elements are ran-

domly dropped to simulate the cast shadow effect. In this figure,

m1 and m4 are dropped and corresponding values of the input

vector are set to 0.

where s ∈ {0, 1}f is a boolean vector with 0 indicating

observations in cast shadows and 1 otherwise. The effect

of attached shadow is accounted by the element-wise max
operator.

4. Proposed method
The proposed DPSN is a differentiable multi-layer neu-

ral network, which learns a mapping from a measurement

vector m ∈ R
f obtained under f different light direc-

tions to the surface normal n ∈ R
3. It operates in a per-

pixel manner for both training and prediction. As stated

in the introduction, we assume that the light directions

L = [l1, . . . , lf ] ∈ R
3×f are known and consistent be-

tween the training and prediction phases. Our method uses

simulated observations that are generated using diverse sur-

face normals rendered with the MERL BRDF database [14],

which stores BRDFs of 100 different real-world materials.

In what follows, we explain the structure of the proposed

network, and training and prediction procedures.

4.1. Network architecture

The proposed DPSN learns the mapping from a mea-

surement vector m of a pixel to the corresponding surface

normal n at that pixel using a fully connected deep neural

network. The DPSN takes as input a measurement vector

m ∈ R
f
+, in which each element corresponds to an obser-

vation under a certain light direction, and outputs the pre-

diction of the surface normal n ∈ R
3. The measurement

vector m is linearly normalized so that ||m||2 = 1.0 before

being fed to the network. While the MERL BRDF dataset

contains three color channels, we treat each color channel

independently.

One of the major challenges in photometric stereo is cast

shadow. Different from attached shadow, cast shadow is due

to a global illumination effect, which cannot be modeled by

a local illumination model regardless of the representation

ability of a BRDF model. To simulate the cast shadow ef-

fect in the training phase, we introduce a shadow layer that

is based on a variant of the dropout scheme [23]. Dropout

is a technique, which randomly drops units from the net-

work during training (or could be used for testing as well)

to prevent learned weights from excessive adaptation. Our

shadow layer applies dropout to input nodes and randomly

drops a part of the input measurement vector, namely set-

ting them to 0, so that the dropped nodes can be regarded

as shadowed observations. By training the network with the

shadow layer, the proposed DPSN effectively learns map-

ping from observations to surface normal with accounting

for diverse BRDFs and cast shadow.

While in conventional dropout, output from the dropout

layer is scaled by 1/(1−r) with a dropout rate r ∈ [0.0, 1.0)
to avoid shrinkage of the output magnitude, our shadow

layer does not apply the scaling but simply sets the selected

elements of the measurement vector to 0 to mimic the shad-

owing effect. The dropout parameter r corresponds to the

ratio of shadowed observations in our context. Obviously,

the parameter r depends on the object shape and the light

distribution, which is inaccessible in general; therefore, we

use varying values of r for training. Specifically, we fluctu-

ate the dropout rate by sampling from a binomial distribu-

tion r ∼ B(f, p), where the probability of each observation

being shadowed p is set to p = 0.05.

The DPSN structure is summarized in Table 1. The

DPSN consists of 7 layers, shadow layer and 6 dense lay-

ers. The each dense layers include ReLU and Dropout dur-

ing training. The DPSN is trained with the following loss

function

L = ||n− n̂||22, (2)

where n is the ground truth of normal vector and n̂ is the

predicted normal vector by the network. L is minimized

using Adam [12] with the suggested default settings.

4.2. Training

The training set for DPSN consists of pairs of an ob-

servation vector and the corresponding surface normal, i.e.,

{(m,n)}. Instead of collecting real-world observations,

we generate the observation vectors {m} using the MERL

BRDF dataset [14] for a diverse set of surface normal {n}
viewed under pre-defined light directions L. The MERL

BRDF dataset consists of measured BRDFs of 100 different

materials, and we form reflectance vectors {b} in Eq. (1)

from the set of surface normal {n} and light directions L.

We ignore the cast shadows when generating a training set,

which means the shadow mask s in Eq. (1) is set to 1.



Table 1. The DPSN structure. The number in the parentheses rep-

resents the number of nodes in each layer. The shadow layer is

used in training, but not for prediction. Dropout rates for training

the Dense layers are set to all 0.5. The input and output dimen-

sions of the shadow layer is 96(= f) in our setting.

Layer

1 Shadow Layer

2 Dense-(4096), ReLU, Dropout

3 Dense-(4096), ReLU, Dropout

4 Dense-(2048), ReLU, Dropout

5 Dense-(2048), ReLU, Dropout

6 Dense-(2048), ReLU, Dropout

7 Dense-(3)
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Figure 2. Examples of rendered images that are used for train-

ing. blob01 to blob03 are a part of shapes from Blobby Shape

Dataset [11], “white-paint”, “silver-metallic-paint” and “red-

plastic” are the material names in the MERL BRDF database [14].

Here, three are shown out of 100 different materials. As seen in

the figures, the rendered images contain specularity and attached

shadows.

While any distributions of surface normal can be used

for generating the surface normal set {n}, for this work,

we used the Blobby Shape Dataset [11], which consists of

various shapes. The shapes are rendered with the MERL

BRDFs under light directions L, and observations at each

pixel location of the rendered images for each color chan-

nel form a measurement vector m. Figure 2 shows the sam-

ple images of training data generated under the certain light

directions. As shown in the figure, the rendered images

contain complex reflectance components that do not obey

a simple parametric model.

4.3. Prediction

In the prediction phase, given a set of observations under

the light directions L, DPSN estimates surface normal in a

per-pixel fashion. In a similar manner to the training phase,

color channels are treated independently. For an RGB im-

age, the DPSN estimates three surface normals per-pixel

and merges them to obtain the final estimate. Namely, say

nr, ng , and nb are the surface normal estimates from the

RGB color channels that are independently estimated, we

merge them by the following procedure. We put them to-

gether by taking the mean vector of the normalized surface

normal estimates as

n̄ =
1

3

(
nr

||nr||2 +
ng

||ng||2 +
nb

||nb||2

)
.

Finally, the merged surface normal n̄ is further normalized

to obtain the final surface normal estimate n̂ as

n̂ =
n̄

||n̄||2 .

5. Experiments
We evaluate the experimental result of the proposed

method using both simulation and real-world datasets. We

will explain the training data and implementation details for

both experiments before showing the results.

Training data and implementation details For experi-

ments, eight shapes out of ten in the Blobby Shape Dataset

are used for generating the training data, and we kept the

remaining two shapes for testing. The shapes are rendered

under pre-defined light directions for each of 100 BRDFs

from MERL dataset. The pre-defined light directions are

the same as the 96 light directions defined in the DiLi-

GenT dataset [21]. As a result, we generated 96 images

for each object and material; therefore, and in total we ren-

dered 8×100×96 = 76800 images. The resolution of each

image is 256× 192, and the total number of the training set

{(m,n)} becomes about 3.9× 107.

DPSN was implemented using TensorFlow2, and trained

for 5000 steps with the batch size 1000. The model which

achieves the highest accuracy for test data is used for eval-

uation.

Evaluation procedure We compare the proposed DPSN

with Lambertian photometric stereo based on conventional

�2 residual minimization (L2) [25] and that with �1 residual

minimization (L1) [10]. For these methods, surface normal

n for each pixel is computed by

minimizen||m− L�n||2F ,

and

minimizen||m− L�n||1
from observations m and known lighting directions L, re-

spectively. For real-world scenes, we also assess the perfor-

mance of our method using the DiLiGenT benchmark that

covers the state-of-the-art methods of non-Lambertian pho-

tometric stereo. To see the effect of shadow layer, we com-

pare DPSN without a shadow layer (denoted as “Proposed”)

and with a shadow layer (“Proposed W/ SL”).

2TensorFlow: https://www.tensorflow.org



Experimental result for synthetic dataset To generate

scenes with unseen BRDFs that are not used for training,

we synthesize new BRDFs by applying nonlinear transfor-

mation over a linearly combined BRDFs that are sampled

from the MERL BRDF database. Specifically, a new BRDF

ρ̃(L,n,v) is generated as the following:

ρ̃(L,n,v) = (αρ1(L,n,v) + (1− α)ρ2(L,n,v))
γ , (3)

where ρ1 and ρ2 are BRDFs sampled from the MERL

BRDF database, and α and γ are constant parameters. In

this experiment, ρ1 and ρ2 are selected randomly from

the database, and the parameters are set to α = 0.5 and

γ = 0.8. For target shapes, we used three objects, sphere,

blob02, and blob08, which have not been used for train-

ing. We used the same light directions as the training for

generating the input data.

The evaluation results are summarized in Fig. 3. The

two material names used for ρ1 and ρ2 are shown in the top

of the figure. “Lambert” means the Lambertian reflectance,

for which the reflectance function ρ is a constant. Since

the generation of synthetic scenes neglects rendering of cast

shadows, our method without a shadow layer (“Proposed”)

shows superior performance to the one with the shadow

layer (“Proposed W/ SL”) in most scenes.

Prediction using real-world dataset Then we evaluate

the performance of our method using the DiLiGenT dataset.

The DiLiGenT benchmark includes the evaluation of the

following eight methods: WG10[17], IW12 [10], GC10 [5],

AZ08 [1], ST12 [19], HM10 [7], ST14 [20], and IA14 [9].

We add our results in addition to these eight methods, as

shown in Fig. 4 and Table 2.

Figure 4 shows the estimated normal maps and corre-

sponding error maps for “Proposed”, “Proposed W/ SL”,

“L2”, and “L1”. Here, we show 6 objects out of 10 in the

DiLiGenT dataset (buddha, cow, goblet, harvest,

pot2 and reading). buddha, pot2 and reading
are objects made of pottery material, whose reflections are

mostly Lambertian except for some specular outliers; there-

fore, “L2” and especially “L1” based on methods work

well. For objects like cow and goblet, which are made

of metallic materials and exhibit strong specular reflection

in a wide area, the estimation error becomes rather large for

Lambertian based methods such as “L2” and “L1”, while

the proposed method can yield highly accurate estimates.

For harvest, the estimation accuracy is poor in all meth-

ods due to the complexity of the shape of the object. For

objects with complicated shapes, various reflection phe-

nomenon besides cast shadow such as interreflections occur.

We discuss more about this issue in following section.

The effect of the shadow layer Figure 5 shows the dif-

ference map of error map between “Proposed” and “Pro-

posed W/ SL”. Here, we pick up 4 objects (ball, pot2,

goblet and harvest) as examples. For all these objects,

the accuracy is generally improved in boundary areas where

shadows often occur. The accuracy improves in larger areas

for ball and pot2 than for goblet and harvest. For

metallic objects with strong interreflections like goblet
and harvest, the measurement value is larger than 0 for

shadows, as the example shown in Fig. 6. Shadow layer

assumes that measurement values in the shadowing parts

become 0, so it shows degraded performance when strong

interreflections exist.

Discussion on shadowing probability p In the above

section, we use the result of shadowing probability p =
0.05, however, the optimal p depends on the shape of object.

In this section, we discuss the effect of shadowing probabil-

ity p. We show the results of p = 0.05 and p = 0.9 on ball
in Fig. 7. Comparing (a) and (b), we can see that although

(b) improves more in the peripheral parts of sphere (shad-

owing parts) than (b), it deteriorates in the central part.

With shadow layer, the model is optimized for the

shadow, and considers that the accuracy deteriorates in the

area where the shadow does not exist. In the case of

p = 0.05, since the dropout rate r sampled in the man-

ner of Sec. 4.1 can be 0, the estimation accuracy does not

deteriorate in areas without shadow. On the other hand, in

the case of p = 0.9, dropout would be applied to all inputs,

so the accuracy deteriorates in the area where the shadow

does not exist. Based on such observation, we use p = 0.05
in the evaluation.

Benchmark comparison In this section, we compare

proposed methods (“Proposed” and “Proposed W/ SL”)

with benchmark results shown in [21]. Table 5 shows the

Mean Angular Error (MAE) in degree of each method for

each objects and the average of them. Green color repre-

sents good result and Red color represents bad result. For

each objects, the best result is highlighted using bold font.

For most objects, the best result is obtained by existing

methods, but “Proposed W/ SL” significantly improves the

accuracy of harvest and obtains the best result of the av-

erage over all objects. This results show that DPSN gener-

ally achieves high accuracy for objects consisting of various

materials (real BRDF), which are not seen during training

(synthetic BRDF). The high accuracy is partially due to that

DPSN an handle the cast shadow effectively, which is not

addressed by most existing methods.

6. Discussion
This paper proposed a photometric stereo method based

on deep learning. The proposed method uses deep neu-

ral network for establishing a flexible mapping from shad-

ing observations to surface normal. Inspired by the suc-
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Figure 3. Experimental result for synthetic scenes. In each row, a normal map is shown on top of an error map. The numbers represent

Mean Angular Error (MAE) in degree. In the top row, GT means the ground truth, the images below the normal maps are examples of

observation images. On the top, material and shape names that are used for synthesizing the data are displayed.
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Table 2. Comparison with benchmark [21].

ball cat pot1 bear buddha cow goblet harvest pot2 reading AVG.
Proposed 3.44 7.21 7.90 7.20 13.30 8.49 12.35 16.81 8.80 17.47 10.30

Proposed W/ SL 2.02 6.54 7.05 6.31 12.68 8.01 11.28 16.86 7.86 15.51 9.41
ST14 1.74 6.12 6.51 6.12 10.60 13.93 10.09 25.44 8.78 13.63 10.30
IA14 3.34 6.74 6.64 7.11 10.47 13.05 9.71 25.95 8.77 14.19 10.60

WG10 2.06 6.73 7.18 6.50 10.91 25.89 15.70 30.01 13.12 15.39 13.35
AZ08 2.71 6.53 7.23 5.96 12.54 21.48 13.93 30.50 11.03 14.17 12.61
HM10 3.55 8.40 10.85 11.48 13.05 14.95 14.89 21.79 16.37 16.82 13.22
IW12 2.54 7.21 7.74 7.32 11.11 25.70 16.25 29.26 14.09 16.17 13.74
ST12 13.58 12.34 10.37 19.44 18.37 7.62 17.80 19.30 9.84 17.17 14.58
GC10 3.21 8.22 8.53 6.62 14.85 9.55 14.22 27.84 7.90 19.07 12.00

BASELINE 4.10 8.41 8.89 8.39 14.92 25.60 18.50 30.62 14.65 19.80 15.39

0 [deg.]

-32 (better)

32 (worse) 

harvestgobletball pot2

Figure 5. Improvement by Shadow Layer. We show difference map of error map between “Proposed” and “Proposed W/ SL”. Pixels whose

normal estimation accuracy is improved by shadow layer are shown in blue, otherwise in red.

goblet harvest

Figure 6. We adjust the left half of red box area with the gamma

correction. The shadowing parts in the box shows larger value than

0 due to strong interreflections.

0 [deg.]

-32 (better)

32 (worse) 

(a) (b)

Figure 7. Comparison shadowing probability p on “Ball”. (a) is

p = 0.05 (“Proposed W/ SL”) and (b) is p = 0.9. Both are dif-

ference maps of error map with “Proposed”. Pixels whose normal

estimation accuracy is improved by shadow layer are shown in

blue, otherwise in red.

cess of example-based methods to deal with challenging

reflectance, we use modern neural network structures and

train it end-to-end with simulated observations rendered by

the MERL BRDF database [14] to replace the functional-

ity of reference objects. In addition, we proposed a shadow

layer that simulates the non-local shadowing effect using

the dropout strategy. Evaluation using real-world scenes

shows more accurate estimation of the surface normal in

comparison to previous techniques.

Limitations One of limitations in our method is the as-

sumption that light directions are pre-defined and remain

the same between training and test phases. Our method

needs to train models for each lighting condition, because

our training requires simulated observations rendered un-

der a specific lighting condition. Our method is particularly

useful if the photometric stereo data capture uses a device

with fixed light sources and camera, so that we only need to

perform the training for that device. It is our future work to

deal with lighting condition which is not pre-defined, such

as the data capture using a randomly waving light source.
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