
Efficient Large-Scale Point Cloud Registration Using Loop Closures

Takaaki Shiratori1 Jérôme Berclaz2 Michael Harville2 Chintan Shah2

Taoyu Li1 Yasuyuki Matsushita1 Stephen Shiller2

1Microsoft Research 2Microsoft, Bing Maps

Abstract

Alignment of many 3D point clouds, possibly captured
by multiple devices at different times, is a critical step for
increasingly popular applications such as 3D model con-
struction and augmented reality. For very large data sets,
traditional methods such as ICP can become computation-
ally intractable, or produce poor results. We present an ef-
ficient method for accurately aligning very large numbers
of dense 3D point clouds, and apply it to a city-scale data
set. The method relies on the novel combination of 1) par-
titioning the point clouds based on loop structures detected
across a combined network of all device capture paths, and
2) making use of the loop closure property to accurately
align point clouds within each sub-problem. Final global
alignment of the loop-based results is formulated as a least
squares optimization with closed form solution. Experimen-
tal results are shown for aligning 3D points across the entire
city of San Francisco with centimeter-scale accuracy, via an
efficient parallelized architecture.

1. Introduction

With recent advances in depth sensing devices and meth-
ods, large 3D point clouds have become an increasingly
common source of data for computer vision tasks such
as 3D model reconstruction, pose estimation, and object
recognition. In most such applications, the point cloud data
is not obtained instantaneously, but rather requires sensor
motion over time, and perhaps use of multiple sensors or
multiple sweeps of a single sensor. Spatially registering
these point clouds captured at different times and/or with
multiple devices becomes a key problem that must be solved
prior to further data analysis.

While many 3D modeling techniques show good re-
sults for objects and environments of a few meters in
size [1, 11, 9], modeling at the larger scales of indoor en-
vironments and entire cities remains technically challeng-
ing. In these cases, many point cloud “frames” captured
along one or more complex sensor paths must all be placed

in a consistent 3D coordinate system, and straightforward
application of popular approaches such as Iterative Clos-
est Point (ICP) algorithm [5] and its variants leads to many
small frame-to-frame alignment errors that often accumu-
late to produce gross distortions in the final result. At the
same time, computation and memory requirements can eas-
ily become infeasible, particularly when methods jointly
optimize alignment of many point clouds rather than op-
erating on them pair-wise.

In this paper, we present a method for aligning very large
sets of 3D point clouds, potentially obtained by many cap-
ture devices and along multiple capture paths, in a manner
that is both accurate and highly parallelizable for efficient
computation. From an initial estimate of the sensor paths,
we construct a 3D graph of their intersection and connec-
tivity, and decompose the overall alignment problem into
smaller ones based on the loop closures that exist in this
graph. Each loop may be composed of segments of different
device acquisition paths. We pair this decomposition with a
novel, local alignment technique called Simultaneous GICP
(S-GICP), based on Generalized-ICP [21], that exploits the
loop closure property to produce highly accurate intra-loop
registration results. The individual loops are then combined
into a single, consistent point cloud via an inter-loop align-
ment step that reconnects the graph of loops with minimal
distortion, according to a least squares optimization with
closed form solution. We also show how to constrain this
last step with high-confidence locations within the initial
device capture path estimates, thereby producing a final re-
sult that is better anchored, for example, to some external
reference coordinate system.

There are several important benefits to our approach.
First, it is well known that simultaneous registration with
loop closure significantly improves point cloud quality, and
our method attempts to ensure that all point clouds ben-
efit from this by incorporating them into separate loop
sub-problems. Second, the S-GICP method effectively re-
estimates the capture path segments within the loop, allow-
ing them to non-rigidly deform in order to jointly optimize
alignment of all the points. Finally, intra-loop registration
can be applied to each of the loops in parallel, thereby en-

1

Figure 1. Our method can register very large city-scale point clouds, such as the San Francisco dataset shown in these pictures.

abling significant reduction of computation time and com-
plexity compared with conventional simultaneous registra-
tion algorithms.

We illustrate the proposed method in the context of city-
scale 3D modeling, from point clouds acquired from multi-
ple vehicles moving throughout the city streets (Fig. 1). In
this scenario, point clouds are obtained from LiDAR sen-
sors mounted on the vehicles, and initial estimates of the
capture paths are derived from onboard GPS and IMU sen-
sors. The graph of capture paths parallels the connectiv-
ity of the city streets, and the “loops” found are often city
blocks containing several buildings. We show results based
on about half a trillion points captured over the entire city
of San Francisco, with accuracy on the scale of centimeters,
processed on a computer cluster of several thousand nodes
in about 4 hours.

2. Prior Work

Given a pair of point clouds without point correspon-
dences, Besl and McKay are the first to introduce the
ICP algorithm [5], which iterates search of point corre-
spondences and optimization of transformation parame-
ters (translation and rotation) by minimizing point-to-point
distances between the correspondent points until conver-
gence. Many improvements have been made for point cor-
respondence search such as considering normals of each
point [7] and sensor-to-point rays [3] and for optimization
such as point-to-plane distance [7], approximate plane-to-
plane distance [21] and Lp norm (p < 1) [6]. Papers by
Rusinkiewicz et al. [20] and Tam et al. [24] evaluated vari-
ants of the pair-wise ICP algorithms in the literature.

For the case where multiple point clouds are provided,
Chen et al. sequentially applied pair-wise ICP to multi-
ple point clouds [7]. Masuda [13] extended Chen et al.’s
method, and registered a single point cloud incrementally
by minimizing distances between points and meshes cre-
ated from registered point clouds. These sequential ap-
proaches are quite inaccurate because of accumulation of
pair-wise registration errors. One approach is to extend
the ICP algorithm to optimize transformation parameters

of all point clouds simultaneously, referred to as direct ap-
proaches. Bergevin et al. [4] and Neugebauer [14] first ap-
plied pair-wise ICP to point cloud pairs, and then refined all
point clouds simultaneously by minimizing point-to-plane
distances. Nishino et al. [16] used point-to-point distances
with M-estimator to improve robustness. Pfaff et al. [17]
used a Kalman filter-based sequential ICP for large-scale
mapping, and performed simultaneous registration when
loops were detected.

More recent work focuses on extracting features from a
point cloud and minimizing feature distances for multi-view
registration, referred to as feature-based approaches. Be-
cause features enable to establish absolute correspondences
between point cloud pairs, the point correspondence update
in the ICP framework is not necessary. Gelfand et al. [8]
extracted volumetric features from surfaces computed from
input point clouds. Multi-view registration based on these
features provide sufficiently good initial guess for the multi-
view ICP algorithms. Zou et al. [25] considered Gaus-
sian curvature for surface geometry for feature extraction.
Bariya et al. [2] extracted scale-dependent/invariant fea-
tures from 2D normal maps for alignment and recognition.

The other category is to distribute registration errors to
point clouds by minimizing coordinate frame errors from
pair-wise registration, referred to as motion averaging ap-
proaches. Pulli [18] introduced the virtual mate approach
that used transformations estimated with pair-wise registra-
tion as constraints, and repeatedly registered point clouds.
Sharp et al. [22] introduced an analytic solution in this cat-
egory and minimize coordinate frame errors of rotation and
translation separately. Shih et al. [23] formulated coordi-
nate frame error minimization as a quadratic programming
problem for Lie algebra parameters. Govindu et al. [12]
introduced a Lie-algebraic averaging methods to distribute
coordinate frame errors.

These three approaches have different characteristics
in terms of accuracy and computational cost. The latest
feature-based approaches are the most efficient and qualita-
tively accurate, but require input point clouds to be dense
and uniform for computing underlying geometry such as

surface and volume. However, such dense and uniform
point clouds are not necessarily available, particularly for
outdoor scenes, because of the inside-out manner of out-
door depth sensors. Between the other two approaches, the
direct approaches consider geometric distances (e.g., point-
to-point, point-to-plane), and often achieve better accuracy
than the motion averaging approaches, while the direct ap-
proaches are computationally more expensive [23]. How-
ever, none of the above methods are scalable for very large
point clouds: The more point clouds, the higher computa-
tional cost. While we take the direct approach for intra-loop
registration due to its accuracy, the parallelization capabil-
ity of our method achieves significant efficiency improve-
ments.

In terms of efficiency, the method of Pylvänäinen et
al. [19] shares a few similarities to ours, in particular the de-
composition of the large registration problem according to
city block loops. However, within each loop sub-problem,
they use sequential ICP for translational registration that
fails to take advantage of the loop closure property, and
thus suffers from error accumulation, similarly to Chen et
al.’s method [7]. Our approach minimizes the approximate
plane-to-plane distance with respect to translation and rota-
tion for simultaneous registration. We relax the non-linear
properties of this optimization with an alternating optimiza-
tion, and achieve accuracy with reasonable efficiency.

3. Point Cloud Registration with Loops
Our point cloud data is collected by one or more vehi-

cles outfitted with LiDAR sensors, traveling along multi-
ple overlapping paths through a city. Data along each cap-
ture path is divided into local point cloud “frames” , each
of which is captured within a small spatio-temporal win-
dow. The estimated vehicle location and orientation, de-
rived from on-board GPS/IMU sensors, is also associated
with each point cloud frame, and allows them to be ap-
proximately aligned in a global coordinate system. Due to
GPS signal loss and other factors, alignment errors of up to
several meters in location and a few degrees in orientation
are often observable where there is spatial overlap between
point cloud frames captured by different vehicle drives.

Our method for correcting this error begins by construct-
ing a graph representation of the multiple overlapping vehi-
cle paths, and assigning point cloud frames to edges of the
graph (Fig. 2(a)). The graph is segmented into a set of ad-
joining loops, each of which may be composed of frames
from different vehicle capture paths. Next, S-GICP (see
Section 3.2) is used to jointly optimize alignment of all
frames within each loop (Fig. 2(b)). This intra-loop reg-
istration step is applied to each loop independently, and
makes use of loop closure to produce self-consistent results.
Finally, the loop point clouds are aligned via a closed-form,
least squares inter-loop registration step that also integrates

high-confidence GPS/IMU data, to produce a globally con-
sistent and accurate city-scale point cloud (Fig. 2(c)).

3.1. Point Cloud Partitioning

Each node in our graph is a location at which a vehicle
path crosses either itself or another path. Edges are cre-
ated between node pairs that are directly connected (i.e.,
no intervening nodes) along at least one vehicle’s path.
The geometric shape of the vehicle path between two di-
rectly connected nodes is retained, and these paths are fre-
quently not straight lines between the nodes’ respective ge-
ographic locations. If multiple drives occurred between two
nodes, these path segments are clustered according to their
shape, and each cluster becomes a separate edge between
the nodes.

The graph can be formed directly from the paths esti-
mated from GPS/IMU data, by first creating nodes where
paths converge within a threshold distance from sufficiently
different directions, or where a path begins traversal through
a location previously visited by itself or another path. Our
experiments showed good results with this approach, which
is also applicable to other 3D capture scenarios such as
indoor environment modeling with an RGBD sensor [15],
with initial paths estimated from inertial sensors or tech-
niques such as SLAM. However, to better relate our work
to a variety of geospatial information sources, we find it use-
ful to first associate point cloud frames with locations on a
known street map of the city, and then form a graph based
on the street connectivity.

HMM-based association of sensor paths to a map The
shapes of the streets are provided with the map, and are re-
sampled at two-meter spacing to produce candidate point
cloud assignment locations. With these candidate loca-
tions as the hidden states, an HMM framework performs
this assignment independently for each vehicle drive, us-
ing observation probabilities based on the distance from the
GPS/IMU-based point cloud location estimate and coher-
ence between the local direction of the street and the esti-
mated vehicle path. State transition probabilities are deter-
mined by the length of the street route between a pair of
locations, thereby encouraging continuity of assignment of
a vehicle path along a connected sequence of road links.

Loop enumeration from sensor paths Once the graph of
capture paths is constructed, we wish to divide it into a set
of loops that, ideally, cannot be further subdivided, do not
overlap, and provide complete coverage of the graph. This
is related to the problem of finding a minimal cycle basis of
an undirected graph, for which algorithms have been pro-
posed in the fields of graph theory and computational ge-
ometry [10]. For graphs that can be embedded in a plane,
such that every node has a 2D coordinate and no edges cross
except at nodes, polynomial time algorithms have been pro-

Frame point cloud

(a) Point Cloud Partitioning (b) Intra-Loop Registration (c) Inter-Loop Registration

Shared sensor pos.
High-conf. pos.

GPS Trace

Figure 2. Overview of our approach. (a) We first partition the entire point cloud into loop-based small point cloud sets. (b) Then intra-loop
registration refines point clouds for all loops in parallel. (c) Inter-loop registration reconnects the graph of loops based on the refined sensor
locations and produces a geospatially registered point cloud.

Algorithm 1 Algorithm for enumerating graph loops
procedure FINDALLLOOPS(G) . G: the graph

S ← all edges in G . S: Edges at which to start
L← ∅ . L: Set of all loops found
while S 6= ∅ do

e← dequeue(S) . Get next start edge
l← ∅ . New loop edge set, initially empty
for each end node n of e do

if FOLLOWNEXTEDGE(G,e,n,l) then
L← L ∪ TRIMLOOP(l) . Found a loop
if e /∈ l then . Start edge not part of it

enqueue(S, e) . Try it again later
return L

procedure FOLLOWNEXTEDGE(G,e,n,l)
if size(l) > MaxLoopSize then return false

l← l ∪ e . Add edge e to loop being built
LEFTSIDEUSED(e)← true . Mark as used
if CLOSED(l) ∧ ¬INVERTED(l) then

return true . Found loop
for each edge ee ∈ CLOCKWISEORDER(n, e) do

if (e 6= ee) ∧ ¬LEFTSIDEUSED(e) then
nn← end node of e such that n 6= nn
if FOLLOWNEXTEDGE(G,ee,nn,l) then

return true . Found loop recursively
l← l \ e . No loop found; remove edge from set
LEFTSIDEUSED(e)← false . Free edge for re-use
return false

posed to find a “two-basis” for the graph, where each edge
participates in at most two loops. Our problem is not quite
this simple, in that the road network is actually 3D, due to
overpasses, stacking of highways above surface streets, and
other road designs. “Dead-end” streets (only one connected
edge), as well as relatively long sections of sparsely con-
nected highways, further complicate our problem.

We therefore propose Algorithm 1, to efficiently parti-
tion a graph into a maximum number of loops with min-
imal overlap. It relies on projecting the 3D graph onto
a planar coordinate system, so that an ordering of edges
exiting a node, relative to a given incoming edge, can be
defined. We use the 2D geospatial latitude and longitude

coordinate system, and order edges in a clockwise man-
ner. FindAllLoops initiates two depth-first searches (im-
plemented via FollowNextEdge) at each graph edge, in the
directions of each end node of the start edge. The depth-first
search explores subsequent edges according to Clockwise-
Order, which results in a preference for taking the left-most
available turn at each node. As traversal progresses, Left-
SideUsed updates a “winged-edge” data structure to indi-
cate that the “left” side of the edge (defined relative to the
direction of traversal) is part of a new loop under construc-
tion. Edges are bypassed in the exploration if they have pre-
viously been incorporated into a loop on their left side. The
Closed predicate is true when traversal returns to a node
that has already been visited in exploration from the cur-
rent start edge, and TrimLoop removes any initial edge se-
quence prior to the first loop node. It can occur that many
left-most available turns during an exploration were actu-
ally rightward turns, such that all edges in the final loop
have their left side on the exterior of the loop, rather than
the interior as expected. We found that exclusion of such
loops (accomplished via Inverted) greatly improved both
the algorithm speed and simplicity. We initially impose a
maximum loop length and a constraint that no loop can be
self-crossing (i.e. edges crossing over others in the same
loop) in FollowNextEdge to find all the smallest, simplest
loops first, and then slowly raise the maximum and remove
the constraint after no more such loops can be found. Our
method finds loops such that a near-maximal number of
graph edges participate in exactly two loops.

3.2. Intra-Loop Registration

Once loops are determined, our method performs the
point cloud registration for each loop. A loop contains a
set of point cloud frames, and the goal of this step is to
align the frames in a loop, and to refine sensor positions ac-
cordingly. Our method is built upon the Generalized ICP al-
gorithm [21], which we combine with a simultaneous opti-
mization using loop closure. We call the developed method
Simultaneous Generalized ICP (S-GICP). Similar to con-
ventional ICP methods, our S-GICP iterates (1) point cor-
respondence search and (2) optimization of transformation

parameters of every frame, until convergence.
For point correspondence search, we use KD-tree-based

nearest neighbor search, followed by thresholding for cor-
respondent point distances. The thresholding is an impor-
tant step to remove unreliable correspondences with large
distances, which are likely to be outliers. The threshold pa-
rameter is set to 3 meters in all experiments. To reduce the
computational cost of point correspondence search, we first
perform nearest neighbor search for each frame based on
the mean point position, and pair the frames if the distance
between frames is less than 14 meters. Then, point corre-
spondence search is performed for the detected frame pairs.
We empirically found that the frame pairing step is suffi-
cient to ensure loop closure, given positioning sensor data.

For the optimization, we use an approximate plane-to-
plane distance derived from maximum likelihood estima-
tion [21]. We use a rigid transformation model, i.e., rota-
tion and translation, for each frame to be aligned. Given a
set of point correspondences S found in pairs of frames, the
objective function E to be minimized over translation t and
rotation R is defined as

E =
∑

(pm
i ,pn

j)∈S

d
(
pm
i ,p

n
j

)T
Σ−1mnd

(
pm
i ,p

n
j

)
, (1)

where pm
i is the position of i-th point in m-th frame. The

distance function d and weighting factor Σ−1 are defined
as

d
(
pm
i ,p

n
j

)
= (Rmpm

i + tm)−
(
Rnp

n
j + tn

)
, (2)

Σmn = RmC̃m,iR
T
m +RnC̃n,jR

T
n , (3)

C̃m,i = Um,i diag (1, 1, ε) UT
m,i , (4)

where Um,i contains eigenvectors of the covariance matrix
of pm

i , and ε is a small constant representing variance along
the normal direction, set to 10−3.

To avoid excessive rotation and resulting erroneous
point correspondences over iterations, we take a two-stage
optimization strategy. Specifically, we first restrict the
transformation to translation only, and once it has con-
verged, we then relax the transformation to be rotation and
translation. These steps are as follows.

Estimation of translation t In the first stage with trans-
lation only, the rotation parameter in Eqs. (2) and (3) are set
to identity (R = I). This case makes the objective func-
tion E quadratic with respect to the translation t, and the
optimal solution can be efficiently obtained via the normal
equation derived from ∂E/∂tm = 0.
Estimation of translation t and rotation R The sec-
ond stage of translation t and rotationR estimation assumes
small rotation θz only around the vertical z axis (yaw). In
our experimental setup, rotations about other axes are typi-
cally negligible, due to the way IMU sensors measure rota-

tion. By assuming a small rotation, the rotation matrix can
be approximated to a linear form as

R =

 1 θz 0
−θz 1 0

0 0 1

 . (5)

Note that the orthogonality of the rotation matrix is en-
forced using SVD after the linear estimation. Due to the
non-linearity of the objective function E, we take an alter-
nating optimization approach by treating Σ as an auxiliary
variable. Namely, {t, R} and Σ are updated one after an-
other, by first solving Eq. (1) using the previous estimates
of Σ, then updating Σ by

Σmn ← RmC̃m,iR
T
m +RnC̃n,jR

T
n (6)

using the previous estimates ofR. The alternating optimiza-
tion is repeated until convergence.

In the above optimization stages, the convergence crite-
rion is defined using the norm of the parameter variations;
when it becomes less than 10−8, the iteration is terminated.

3.3. Inter-Loop Registration

We rely on the dual inclusion property of edges of a cap-
ture path graph to serve as a basis for inter-loop registra-
tion. Specifically, given a rigid transformation consisting
of rotation matrix A and translation b for each loop, sensor
positions s shared by i-th and j-th loops satisfy

Aisi + bi = Ajsj + bj , (7)

where A is defined in the same manner as Eq. (5), and si
represents a device position in i-th loop after intra-loop reg-
istration. Our GPS sensor produces a confidence value for
each pose measurement c = [1; 6], where 1 is the most con-
fident. In normal operation, about 8% of the poses have
the highest confidence, which results in centimeter accu-
racy. We make use of the high confidence poses to anchor
the transformations by defining an additional constraint

Ais
H
i + bi = ŝH , (8)

which ensures that high confidence poses sH stay in their
original position ŝH .

Bringing together all loops with Eqs. (7) and (8), we for-
mulate a sparse linear system of equations with respect to
A and b. The solution is efficiently obtained by solving
the system in a least-squares sense. Once A and b are es-
timated for all loops, we apply these rigid transformations
for all points in each loop to produce a single, final point
cloud.

3.4. Computational Cost

For the loop detection part, our algorithm can achieve a
time complexity ofO(|V |+|E|), where |V | is the number of

nodes and |E| the number of edges in the graph. In the city
map settings, both of them can be considered proportional
to the number of sensor positions in the capture paths.

The computational cost of intra-loop registration mainly
consists of four parts. Given m frames, each of which con-
taining n points, the KD-tree construction for nearest neigh-
bor search takes O(n log2 n) for each frame, resulting in
O(mn log2 n) in total. The covariance matrix calculation
for each point costs O(mn). The time to construct the lin-
ear system will be proportional to the number of point cor-
respondences, which is approximately O(mn) if the frame
distance threshold is fixed. The constructed linear system
is solved in 3m × 3m for the translation-only case, and
4m × 4m for translation and z-rotation, so the time com-
plexity is O(m3). The total time complexity for intra-loop
registration is O(mn log2 n+m3).

As inter-loop registration algorithm solves a sparse linear
system, the complexity is O(k2), where k is the number
of loops. This complexity bound depends on the sparsity
assumption that the amount of adjacent loops for any single
loop is bounded.

The time complexity for the entire registration process
is O(k2 + km3 + kmn log2 n). If a typical direct regis-
tration method such as simultaneous ICP is performed, the
time complexity is O(k3m3 + kmn log2 n). We signifi-
cantly reduce the computation cost by applying the three-
step approach described above, especially on a city-scale
registration problem with large k.

4. Experiments

Our dataset was acquired by vehicles equipped with Li-
DAR and GPS/IMU sensors over the city of San Francisco.
It represents an area of 125 km2 and 1,900 km of roads,
with a total of about 0.4 trillion points. We consider points
in a 360◦ sweep as a single point cloud frame, and collect
every four-meter frames for each detected loop.

4.1. Results of San Francisco Dataset

We first show the result of loop detection for the entire
San Francisco dataset. Figure 3 illustrates part of all the
capture paths (top), and the detected loops (middle and bot-
tom). The process took 5.3 minutes without data loading on
our distributed computing system. The entire area was par-
titioned into around 4,600 loops. Note that our method is
straightforwardly generalized to other 3D data capture con-
texts, provided that the sensor path graph can be projected
into a 2D coordinate system in which a meaningful ordering
of edges around each node can be defined. Generalization
to more arbitrary 3D graphs is a topic of future exploration.

After loops were detected, we ran our registration
method on the entire San Francisco dataset. Intra-loop reg-
istration was fully parallelized and took about 4 hours on

Figure 3. Result of loop detection. Top: all the capture paths,
middle: detected loops from our point clouds, and bottom: close
views. Detected loops are colorized based on loop IDs.

our distributed computing system. Finally, Inter-loop reg-
istration took around 24 seconds. Figure 4 shows the re-
sulting point cloud. Large misalignments in the raw point
clouds were significantly refined.

4.2. Comparisons on Small Datasets

Based on the loop detection results, we created two small
datasets and evaluated our approach for accuracy and com-
putational cost. As a baseline technique, we applied S-
GICP to entire point clouds of the datasets without loop
detection, which we refer to as direct simultaneous registra-
tion (DSR). One dataset (“Data 1”) consists of four loops,
and each loop contains around 260-290 frame point clouds.
The other dataset (“Data 2”) consists of three loops, and the
number of frame point clouds varies from around 100 to
300. Table 1 shows details of these two datasets. The point
clouds in “Entire” are used for DSR. For this evaluation, we
used a PC with 16-core 2.9 GHz with 256 GB RAM.

Table 2 summarizes the computational timings of each
step in our approach and DSR. Because our method can
process all the loops in parallel, it took at most 287 min-
utes for Data 1, while DSR for the entire point clouds took
565 minutes. Similarly, for Data 2, our method took at most
144 minutes, while DSR took 250 minutes. Our approach,

Figure 4. Result of San Francisco point cloud registered by our approach. Top: a far view, middle: closer views, and bottom: corresponding
raw point clouds.

Table 1. Datasets for efficiency comparisons. The numbers with-
out and with parentheses represent total point counts and frame
point cloud counts, respectively.

L1 L2 L3 L4 Entire
Data 1 16M 14M 16M 14M 45M

(297) (260) (299) (259) (821)
Data 2 9.7M 5.1M 17M – 27M

(170) (88) (296) – (459)

even with the loop detection, was around twice faster than
DSR. According to the computational cost analysis, we can
expect more efficiency improvements if more loops are con-
sidered.

Figure 5 shows raw and refined sensor trajectories and
registered point clouds overlaid onto aerial images. In par-
ticular, Data 2 contains significant GPS errors highlighted
with the orange-colored box. Our approach corrected the
errors, and the resulting trajectory and point clouds are rea-
sonably matched to the aerial image. Figure 6(a) shows
comparisons of raw point clouds, DSR result, and our result

Table 2. Comparisons of computational timings between our ap-
proach and DSR. The numbers in parentheses represent the num-
ber of outer loop iterations in DSR, and “m” and “s” represent
minute and second, respectively.

Ours
DSR

Intra. Inter.
Data 1 L1: 105m (5), L2: 163m (6), 0.425s 565m (7)

L3: 287m (17), L4: 185m (8)
Data 2 L1: 93m (9), L2: 38m (12), 0.362s 250m (9)

L3: 144m (5)

for Data 1, and Figure 6(b) shows similar comparisons for
some facade in Data 2. In Data 2, significant GPS errors
along the vertical direction were observed as highlighted
with red arrows in the raw point clouds. Both DSR and our
results were significantly improved from the raw data, and
have comparable quality. These comparisons indicate that
our approach achieves registration results visually compa-
rable with DSR, while our approach is much more efficient.

(a) Data 1

(b) Data 2
Figure 5. Results of our approach for the two datasets. The left
in (a) and the top in (b) show raw GPS trajectories (red dots) and
refined trajectories (green dots). The right in (a) and the bottom in
(b) show registered point clouds overlaid onto aerial images.

5. Discussion

In this paper, we presented an efficient approach for
city-scale point cloud registration. We take advantage of
the structure of our dataset to decompose it into several
smaller and more tractable subsets, which can be processed
independently. Our approach consists of three main steps:
We first partition the input point cloud into individual city
blocks. We then register each block independently using si-
multaneous GICP. This step is highly parallelizable, yet it
still produces very accurate alignment. Finally, we bring all
blocks together in a single closed-form solution, which also
takes high confidence GPS measurements into account to
globally anchor our final point cloud.

A limitation of our method comes from the assumption
of small rotational errors for efficient optimization in both
intra- and inter-loop registration. In practice however, we
found this assumption to be reasonable: The maximum an-

(a) Data 1

(b) Data 2
Figure 6. Close views of point clouds. Top: raw point clouds,
middle: point clouds by DSR, and bottom: point clouds by our
approach. Figures on the right show zoomed-in views of points in
the orange boxes on the left.

gle of estimated rotations in the San Francisco dataset was
1.1◦. A violation of this assumption, caused for instance by
large positioning errors, would decrease registration quality.

An interesting future direction for our work is indoor
point cloud registration. Recent developments, such as
commodity depth cameras or indoor positioning systems
using Wi-Fi or Bluetooth, have made indoor 3D capture
possible. Our method would be well suited to register such
data and possibly align it with the type of outdoor data we
deal with in this paper.

References
[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Com-
munications of ACM, 54(10):105–112, 2011. 1

[2] P. Bariya, J. Novatnack, G. Schwartz, and K. Nishino.
3D geometric scale variability in range images: Features
and descriptors. International Journal of Computer Vision,
99(2):232–255, 2012. 2

[3] R. Benjemaa and F. Schmitt. Fast global registration of 3D
sampled surfaces using a multi-z-buffer technique. In Proc.
International Conference on Recent Advances in 3-D Digital
Imaging and Modeling, pages 113–120, 1997. 2

[4] R. Bergevin, M. Soucy, H. Gagnon, and D. Laurendeau.
Toward a general multi-view registration technique. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
18(5):540–547, 1996. 2

[5] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, 1992. 1, 2

[6] S. Bouaziz, A. Tagliasacchi, and M. Pauly. Sparse iterative
closest point. Computer Graphics Forum, 32(5), 2013. 2

[7] Y. Chen and G. Medioni. Object modelling by registration
of multiple range images. Image and Vision Computing,
10(3):145–155, 1992. 2, 3

[8] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Ro-
bust global registration. In Proc. Eurographics Symposium
on Geometry Processing, 2005. 2

[9] K. Ikeuchi, T. Oishi, J. Takamatsu, R. Sagawa, A. Nakazawa,
R. Kurazume, K. Nishino, M. Kamakura, and Y. Okamoto.
The great buddha project: Digitally archiving, restoring, and
analyzing cultural heritage objects. International Journal of
Computer Vision, 75(1), 2007. 1

[10] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi,
T. Ueckerdt, and K. A. Zweig. Cycle bases in graphs: Char-
acterization, algorithms, complexity, applications, 2009. 3

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project: 3D
scanning of large statues. In Proc. SIGGRAPH, pages 131–
144, 2000. 1

[12] V. Madhav and A. Pooja. On averaging multiview relations
for 3D scan registration. IEEE Transactions on Image Pro-
cessing, 23(3):1289–1302, 2014. 2

[13] T. Masuda. Generation of geometric model by registration
and integration of multiple range images. In Proc. Interna-
tional Conference on 3D Imaging and Modeling, 2001. 2

[14] P. J. Neugebauer. Geometrical cloning of 3D objects via si-
multaneous registration of multiple range images. In Proc.
Shape Modeling International, pages 130–139, 1997. 2

[15] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli,
O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim,
and A. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In Mixed and augmented reality (IS-
MAR), 2011 10th IEEE international symposium on, pages
127–136. IEEE, 2011. 3

[16] K. Nishino and K. Ikeuchi. Robust simultaneous registra-
tion of multiple range images. In Proc. Asian Conference on
Computer Vision, 2002. 2

[17] P. Pfaff, R. Triebel, C. S. P. Lamon, W. Burgard, and R. Sieg-
wart. Towards mapping of cities. In Proc. International Con-
ference on Robotics and Automation, pages 113–120, 2007.
2

[18] K. Pulli. Multiview registration for large data sets. In
Proc. International Conference on 3D Imaging and Model-
ing, 1999. 2

[19] T. Pylvänäinen, J. Berclaz, T. Korah, V. Hedau, M. Aan-
janeya, and R. Grzeszczuk. 3D city modeling from street-
level data for augmented reality applications. In Proc. Inter-
national Conference on 3D Imaging, Modeling, Processing,
Visualization and Transmission, pages 238–245, 2012. 3

[20] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP
algorithm. In Proc. International Conference on 3D Imaging
and Modeling, 2001. 2

[21] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In
Proc. Robotics: Science and Systems, 2009. 1, 2, 4, 5

[22] G. C. Sharp, S. W. Lee, and D. K. Wehe. Multiview reg-
istration of 3D scenes by minimizing error between coor-
dinate frames. IEEE Transactions on Image Processing,
26(8):1037–1050, 2004. 2

[23] S.-W. Shih, Y.-T. Chuang, and T.-Y. Yu. An efficient and
accurate method for the relaxation of multiview registration
error. IEEE Transactions on Image Processing, 17(6):968–
981, 2008. 2, 3

[24] G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu,
D. Marshall, R. R. Martin, X.-F. Sun, and P. L. Rosin. Regis-
tration of 3D point clouds and meshes: A survey from rigid
to nonrigid. IEEE Transactions on Visualization and Com-
puter Graphics, 19(7):1199–1217, 2013. 2

[25] G. Zou, J. Hua, Z. Lai, X. Gu, and M. Dong. Intrinsic geo-
metric scale space by shape diffusion. IEEE Transactions on
Visualization and Computer Graphics, 15(6), 2009. 2

