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Abstract—Most conventional algorithms for non-Lambertian photometric stereo can be partitioned into two categories. The first
category is built upon stable outlier rejection techniques while assuming a dense Lambertian structure for the inliers, and thus
performance degrades when general diffuse regions are present. The second utilizes complex reflectance representations and non-
linear optimization over pixels to handle non-Lambertian surfaces, but does not explicitly account for shadows or other forms of
corrupting outliers. In this paper, we present a purely pixel-wise photometric stereo method that stably and efficiently handles various
non-Lambertian effects by assuming that appearances can be decomposed into a sparse, non-diffuse component (e.g., shadows,
specularities, etc.) and a diffuse component represented by a monotonic function of the surface normal and lighting dot-product. This
function is constructed using a piecewise linear approximation to the inverse diffuse model, leading to closed-form estimates of the
surface normals and model parameters in the absence of non-diffuse corruptions. The latter are modeled as latent variables embedded
within a hierarchical Bayesian model such that we may accurately compute the unknown surface normals while simultaneously
separating diffuse from non-diffuse components. Extensive evaluations are performed that show state-of-the-art performance using
both synthetic and real-world images.

Index Terms—Photometric Stereo, Sparse Regression, Piecewise Linear Regression, Sparse Bayesian Learning.
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1 INTRODUCTION

P HOTOMETRIC stereo involves estimating the surface nor-
mals of an object given appearance variations in multi-

ple images taken under different lighting conditions. While
more than 20 years have passed since the original work
on Lambertian photometric stereo [1], recovering the surface
orientations of a natural scene from appearance variations
remains challenging, largely because real-world objects ex-
hibit diverse non-Lambertian effects. The design of practical
photometric stereo algorithms involves complicated trade-offs
related to robustness, efficiency, and versatility, with most
approaches falling into one of two categories. First, there
are many techniques that assume a basic Lambertian model
but augmented with outlier detection for handling all non-
Lambertian regions of the scene [2], [3], [4], [5], [6]. While
this strategy is numerically stable and relatively insensitive
to initializations, it may be computationally expensive since a
large number of images is required for robust outlier rejection.
Additionally, complex reflections such as rough specularities
or non-Lambertian diffuse reflections can be highly disruptive.
In contrast, a second basic approach relies on sophisticated
reflectance models or the sharing of properties across materials
to explicitly account for non-Lambertian reflections [7], [8],
[9], [10], [11], [12]. While these methods are more capable of
handling a wide variety of objects including rough surfaces,
they are often more sensitive to initialization, numerical insta-
bilities derived from the complex nonlinear optimization, and
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the effects of shadows and other corrupting outliers. Further
details regarding existing approaches will be discussed in
Section 2.

This paper presents an alternative photometric stereo algo-
rithm for stably and accurately estimating the surface normals
of a scene in the presence of various non-Lambertian effects.
For this purpose, a hierarchical Bayesian model is developed
in Section 3 that automatically decomposes observed appear-
ances into a continuous piecewise linear diffuse component
and a sparse, non-diffuse component for capturing shadows,
specularities, and other corruptions. Optimization and infer-
ence is accomplished using a robust majorization-minimization
technique akin to the popular EM algorithm, with desirable
convergence properties and quantifiable advantages over stan-
dard convex estimators.

For mathematical convenience, we develop our diffuse com-
ponent by assuming, in the absence of non-diffuse corruptions,
that pixelwise appearances are well-approximated by a mono-
tonic (and therefore invertible) function of the dot-product
between the surface normal and the lighting direction. We may
then consider the inverse representation of the image formation
process, where the unknown normal vector is now separated
from the unknown monotonic inverse reflectance function. By
parameterizing the latter using a piecewise linear approxima-
tion, we obtain a set of linear equations in both the surface
normals and diffuse parameters, leading to simple, closed-
form estimators. We note that the piecewise linear function
has been widely used for regression purposes [13] because of
its simplicity and representational capability. In the context of
photometric stereo, this function is a the natural extension of
the Lambertian reflectance model, which directly corresponds
to the case where there is only one linear segment. Later we
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will empirically demonstrate that additional piecewise linear
diffuse segments (e.g., three) can effectively represent many
complex non-Lambertian reflections.

Of course we do not know a priori where non-diffuse
appearances will be located, and thus the overall estimation
problem is underconstrained even with many available images.
Thus, our hierarchical Bayesian model attempts to maximize
the number of observations that can be adequately explained
via the piecewise linear inverse diffuse function (the inlier
model) while treating the remaining observations, including
specularities, shadows, and sensor saturations, as non-diffuse
elements with separate, unknown variances learned from the
data (the outlier model). The partitioning between inliers and
outliers is estimated simultaneously with the normal vectors
and piecewise linear parameters using a principled variational
Bayesian technique.

The proposed framework benefits from simple, efficient
pixelwise optimization, which is easily amenable to parallel
processing. Moreover it does not require the pre-processing
of specularities/shadows, careful initialization strategies, or
typical smoothness constraints for both object structure and
reflectance, which can disrupt the recovery of fine details.
Consequently, we do not suffer from numerical instability even
with relatively few input images (e.g., 20) and we do not
have difficulty handling spatially varying materials with high-
frequency structures. Extensive experiments in Section 4 show
that our implementation produces more stable, accurate, and
efficient surface normal estimates than other robust algorithms
such as [3], [6], even when applied to non-Lambertian materi-
als that previously required complex model-based approaches
such as [11]. A preliminary version of this work, without
the piecewise linear diffuse model, many algorithmic details,
or comprehensive empirical testing, has appeared in recent
conference proceedings [14].

2 RELATED WORK

Since Woodham [1] first introduced photometric stereo for
Lambertian scenes, the extension to non-Lambertian surfaces
has drawn significant interest. These extensions are largely
categorized by whether the non-Lambertian reflections are
considered as outliers for removal, or as inliers using non-
linear reflectance modeling.

In the former class, surface normals are recovered via a
simple Lambertian reflectance model while non-Lambertian
corruptions are robustly neglected. The most traditional yet
still widely used technique is intensity thresholding for avoid-
ing the effects of shadows and specularities because of its
simplicity. To handle spatially varying albedo or sensor sat-
urations, some recent approaches incorporate classification
methods for detecting shadows and specularties [15], [16],
[17], or exploit graph-based visibility estimation for shadow
removal [18]. A color-based technique has also been used for
specular removal [2]. More recently, techniques for handling
other corruptions, such as inter-reflections [19] and calibration
errors [20], have been proposed.

For robustly identifying outliers, the RANdom SAmple
Consensus (RANSAC) scheme has been used in [3], [21], [5].

While RANSAC is effective when the number of observations
and unknown inlier parameters are relatively small, it be-
comes computationally intractable with higher dimensionality.
Alternatively, some works cast photometric stereo as a ma-
trix decomposition or factorization problem considering non-
Lambertian corruptions as missing entries. For example, Wu et
al. [6] propose a rank-minimization approach that decomposes
observations into a low-rank Lambertian structure and sparse
non-Lambertian corruptions/outliers, while del Bue et al. [22]
solve photometric stereo as a manifold constrained bilinear
factorization problem in the presence of missing entries.

Spatial constraints are also exploited to effectively remove
outliers. Tang et al. [23] use an Markov random field (MRF)
for imposing discontinuity preserving smoothness using belief
propagation. A similar setting has also been used in [24] where
graph cuts is used for deriving the optimal solution. While the
MRF-based approaches preserve discontinuities, they tend to
over-smooth the surface normal map. Spatial information is
also incorporated in filtering approaches [25], [4]. Miyazaki et
al. [25] use a filter-based method where an inaccurate surface
normal is refined via the median estimate of neighboring
pixels. Yu et al. [4] propose a pixelwise scheme to find a
maximum feasible subset of Lambertian observations via a
Big-M algorithm.

In contrast to the former outlier removal techniques, a
second class of methods treat non-Lambertian reflections as in-
liers using non-linear reflectance modeling. Various physically
inspired parametric reflectance models of the bidirectional
reflectance distribution function (BRDF) have been used in
photometric stereo. For example, Torrance-Sparrow [26] and
Ward [27] models have been used to account for speculari-
ties [7], [8]. To handle spatially varying materials, Goldman et
al. [9] approximate basis materials by the Ward model, and
reflectance parameters and surface normals are simultaneously
estimated in a non-linear manner. More recently, Alldrin et
al. [10] use a non-parametric representation of BRDFs for
simultaneously recovering shape and and BRDFs, which are
represented by bi-variate form [28]. The model and optimiza-
tion technique are further simplified in Shi et al. [11], where
a compact biquadratic representation of isotropic BRDF is
introduced.

Instead of explicitly modeling the reflectances, there are
methods that use general reflectance properties that are shared
among diverse real reflectances. The properties of isotropy
and reciprocity symmetry [29], [30] have been exploited
for surface normal reconstruction in [31], [32], [33]. The
monotonicity property of general diffuse reflectances is also
used in [33], [12]. Other than these properties, radiance
similarity [34], image deviates [35] and diffuse maxima [36]
are also used in the photometric stereo context. Example-
based approaches [37], [38] also fall in this category, in which
surface normals are estimated using a reference object whose
shape is known and BRDF is the same as the target object.

Our method tries to capitalize on both of the above ap-
proaches in that it relaxes the often restrictive Lambertian
reflectance model by using a piecewise linear representation
of reflectances, while simultaneously performing robust esti-
mation to avoid over-fitting. More specifically, our sparsity
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penalty effectively rejects outliers while the inverse piecewise
linear representation of diffuse reflectances enables us to
handle a wide variety of materials.

3 PHOTOMETRIC STEREO VIA INVERSE
PIECEWISE LINEAR SPARSE REGRESSION

In this section, we formulate the estimation of surface normals
using photometric stereo as a piecewise-linear sparse Bayesian
regression problem. Henceforth, we rely on the following
assumptions:

1) Relative position between the camera and the object is
fixed across all images.

2) Object is illuminated by a point light source at infinity
from varying and known directions.

3) Camera view is orthographic, and the radiometric re-
sponse function is linear.

3.1 Problem Statement
Diverse appearances of real world objects can be encoded by a
BRDF, which relates the observed intensity I at a given point
on the object to the associated surface normal n ∈ R3, the
incoming lighting direction l ∈ R3, and the outgoing viewing
direction v ∈ R3 via

I = f(n, l,v). (1)

The dichromatic reflectance model [39] states that if the
scene is illuminated by a single dominant point light source,
the radiance is a linear combination of diffuse and specular
reflectance via

I = fd(n, l) + fs(n, l,v). (2)

In practice, various additional effects are observed, including
attached/cast shadows, image noise, inter-reflections, and so
on. We can interpret these effects as additive corruptions e
applied to the ideal scene leading to the image formation
model giving

I = fd(n, l) + fs(n, l,v) + e. (3)

The photometric stereo is a problem to recover surface normal
n of a scene by inversely solving Eq. (3) from a collection
of m observations under the unknown set of parameters
(fd, fs, e). Note that except for uncalibrated photometric
stereo problems such as [36], l and v are usually known.

Early photometric stereo works assumed that the diffuse
component of observation is represented by Lambertian re-
flectance model (i.e., fd = ρnT l, where ρ is a surface
albedo) and discarded the non-Lambertian component fs + e
as outliers [3], [6], [14]. While the Lambertian assumption
is effective for a certain materials, this strong assumption on
the reflectance substantially limits the target objects. Instead,
we introduce the general representation of the material diffuse
function to handle non-Lambertian diffuse materials as follow,

fd(n, l) = f(nT l), (4)

where we assume f(nT l) passes through the origin, that is
f(0) = 0. Note that Lambertian image formation is a special

case when f is a linear function. Then, we also merge fs and e
as deviations from the diffuse reflection and use the following
imaging model,

I = Ĩ + e = f(nT l) + e. (5)

Here, Ĩ is the diffuse component of I . Our goal is to recover
unknown surface normal n, diffuse reflectance function f
and non-diffuse corruptions e from a collection of lighting
directions l and associated appearances I . However, there are
two critical issues which must be solved: (a) the coincidence
of unknown parameters n and f in the same term, and (b)
an under-constrained problem since the number of unknowns
(equal to m + 2 plus however many degrees of freedom
are needed to describe f ) always exceeds the number of
equations (equal to the number of images m). We overcome
these difficulties by combining a convenient, piece-wise linear
inverse representation of the imaging model with a sparsity
penalty applied through latent variables embedded in a robust
hierarchical Bayesian framework.

3.2 Inverse Diffuse Reflectance Model
For simplicity, we first neglect the non-diffuse corruptions
e in Eq. (5). Then, we assume the monotonicity of the
diffuse reflectance function like [33], [12] which provides
the following constraint on the function under two different
lighting directions l1 and l2,

nT li > n
T lj ↔ f(nT li) > f(nT lj). (6)

Under this assumption, the unique existence of the inverse
function of f is guaranteed giving

f−1(Ĩ) = g(Ĩ) = nT l. (7)

Now that we assume only diffuse reflections appear in the
scene, i.e., Ĩ = I , the following equation is acquired,

nT l = g(I). (8)

We call Eq. (8) the inverse diffuse reflectance model. The fun-
damental advantage of this model is that an unknown function
g(I) and a surface normal n are separated, which contributes
to the simplicity of the problem. Eq. (8) suggests that the per-
pixel collection of 2-D plot (Ii,nT li) corresponding to i-th
image must draw a monotonic inverse diffuse function g(I).
While this relationship limits the solution space of both n and
g, the problem is that there are still multiple feasible solutions
of a pair of n and g(I) as illustrated in Fig. 1, especially
when m is small. To reduce inherent ambiguity of the problem,
we further assume a parametric model of the general inverse
diffuse function g(I).

Given that the left-hand-side of Eq. (8) is linear in the
unknown normal vector n, for computational simplicity we
would like to impose similar linearity on the right-hand-side
in our parameterized representation of g(I). For this purpose,
we then choose to express g(I) as a summation over p fixed
and known, non-linear basis functions gk(I) weighted by an
unknown coefficient vector a, leading to the representation

g(I) =

p∑
k=1

akgk(I). (9)
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Fig. 1. We can draw different monotonic curves which
interpolate 2-D plots (Ii,n

T li) derived from (na) in (a)
and (nb) in (b), which illustrates that there are multiple
feasible solutions of a pair of n and g(I) which satisfy the
inverse diffuse reflectance model in Eq. (8).
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Fig. 2. The illustration of the piecewise linear function.
We show the case when the number of basis functions
is three. (a) Each basis function is defined as a polylinear
function which has a breaking point, and (b) the piecewise
linear function is defined as the summation of these basis
functions.

While non-linear in I , g(I) is clearly linear in a =
[a1, . . . , ap]

T . Choices for each gk include polynomial, Gaus-
sian, logistic, and spline functions as well as many others.

We choose to adopt a piecewise linear representation [13]
which is composed of multiple polylinear functions of the form

gk(I) =


0 (0 ≤ I < bk−1)

I − bk−1 (bk−1 ≤ I < bk)

bk − bk−1 (bk ≤ I)

(10)

where each bk−1 denotes the point where the (k−1)-th linear
segment ends and the k-th segment begins. See Fig. 2 for
details. By construction, g(I) will be a continuous piece-
wise linear function, meaning each adjoining linear segment
connects to one another at the corresponding point bk−1,
regardless of the coefficients a. We also assume that b0 = 0,
meaning g(I) will intersect the origin. Remaining values of
bk−1 are chosen such that each piecewise linear segment spans
an equal-sized bin over the range of I .

This choice of basis function leads to a natural generaliza-
tion of the Lambertian reflectance model, which is obtained

when all elements of a are set to the same positive value. We
thus preserve preferable properties of the Lambertian model
where appropriate, while still allowing us to handle more gen-
eral non-linear diffuse reflections where needed. In fact, even
with p small, we may nonetheless approximate a wide variety
of non-linear functionals, with monotonicity ensured whenever
a has all non-negative elements (while we do not strictly
enforce non-negativity, our learning procedure described in
the following sections strongly disfavors any ak < 0). Here
we should note that our model relates to the recent bilinear
BRDF model proposed by Romeiro and Zickler [40], which
is represented as a linear combination of non-negative basis
functions learned through non-negative matrix factorization of
100 materials in the MERL BRDF database [41]. However,
there are two different points. Firstly, our basis functions are
learned directly from the data itself (i.e., linear segment ends
in Eq. (10) are decided from samples at each pixel) while
[40] learns basis functions from the external database. More
importantly, we only model the diffusive component by a
simple linear function which contributes to the computation-
ally efficiency and stability, while [40] adapts basis functions
represented as discretized two-dimensional matrices.

By substituting Eq. (9) into the inverse diffuse reflectance
model, Eq. (8) becomes

nT l =

p∑
k=1

akgk(I). (11)

Collecting variations of observation at the same pixel under
different lighting directions, the equations can be merged into
following linear problem,

Ãx = 0, (12)

where x , [nx, ny, nz, a1, a2, . . . , ap]
T ∈ Rp+3, and

nx, ny, nz are the three elements of the surface normal.
Ã ∈ Rm×(3+p) is a data matrix whose j-th row is given by

Ãj =[−ljx,−ljy,−ljz, b1 − b0,
. . . , bk−1 − bk−2, Ij − bk−1, 0, . . . , 0].

(13)

Here we assume bk−1 ≤ Ij < bk and ljx, l
j
y, l

j
z are three

elements of the j-th lighting direction.
Without loss of generality, we may avoid the degenerate

x = 0 solution to Eq. (12) by constraining
∑p
k=1 ak = 1.

For this purpose we replace Ã by A where [0, 0, 0, 1, . . . , 1] is
appended as the (m+1)-th row of Ã and we define y ∈ Rm+1

as a vector of all zeros except for a one as the last element.
Given the appearance variations (I1, I2, . . . , Im) under dif-
ferent known lighting conditions (l1, l2, . . . , lm), the optimal
surface normal (n) and model parameters (a1, a2, . . . , ap) are
recovered by solving the linear problem

min
x
‖W (Ax− y)‖22. (14)

Here W , diag[1, · · · , 1,∞] ∈ R(m+1)×(m+1) is a diagonal
weighting matrix designed to strictly enforce the constraint∑p
k=1 ak = 1. Note that 2 + p linearly independent images

are sufficient for producing a unique solution to Eq. (14). We
will refer to this photometric stereo method as piecewise linear
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least-squares regression (PL-LS). In spite of its simplicity, PL-
LS works for a wide variety of non-Lambertian diffuse materi-
als (see our experimental results in Section 4.3). The problem
of course is that real images are frequently contaminated with
various non-diffuse effects as modeled in Eq. (5). The next
section will focus on how to handle these corruptions within
our inverse diffuse reflectance model.

3.3 Piecewise Linear Sparse Regression with Non-
Diffuse Corruptions
By introducing additive non-diffuse corruptions e′ in Eq. (11),
the image formation model becomes

nT l =

p∑
k=1

akgk(I) + e′. (15)

Note that although the value of e′ in Eq. (15) is different
from the e in Eq. (5), both factors are directed at the same
observations and thus serve the same overall purpose (see
Fig. 3). The standard least-squares based photometric stereo
problem corresponding to Eq. (15) would involve solving

min
x,e′
‖W (Ax+ e′ − y)‖22 s.t. e′(m+1) = 0, (16)

where e′ , [e′1, e
′
2, . . . , e

′
m+1]T ∈ Rm+1. Note that e′(m+1)

must be set to zero to maintain the constraint
∑p
k=1 ak = 1

(see details in Section 3.4).
Given observations I and lighting directions l, the ultimate

goal is to recover surface normals and model parameters x
and non-diffuse corruptions e′. However, this is an under-
constrained problem since the number of unknowns p+2+m
will always exceeds the number of independent equations m.

One solution to this ambiguity is to apply simple
shadow/specular thresholding [9], [11] or a color channel
transformation [2] as a preprocessing step, to obtain an es-
timate of e′ and/or discard outliers. However, these types of
heuristics may discard useful information at times and come
with an additional computational expense. Moreover, graph-
based approaches [24], [23], [42] and robust algorithms [3],
[6] do not naturally embed within our framework since they
may conflict with our inverse piecewise diffuse model and/or
degrade the numerical stability.

In this paper, we instead introduce a special sparsity penalty
applied to e′, whose minimization disambiguates the infinity
of feasible solutions to Eq. (15). This penalty quantifies the
reasonable observation that objects in the natural world exhibit
dominant diffuse reflections while non-diffuse effects emerge
primarily in limited areas of its appearance. For example,
specularities surround the spot where the surface normal is
oriented halfway between lighting and viewing directions,
while shadows are created only when lTn ≤ 0 (attached
shadow) or when a non-convex surface blocks the light (cast
shadow). Strictly speaking, we assume that the optimal feasi-
ble solution to Eq. (16) is acquired when the largest possible
number of observations are lying on the piecewise linear
diffuse reflectance function. Reflecting this assumption, our
estimation problem can be formulated as

min
x,e′
‖e′‖0 s.t. y = Ax+ e′, e′(m+1) = 0. (17)

𝑓 𝒏𝑇𝒍 = 𝑔−1(𝐼) 

𝑒𝑖  

𝐼𝑖  

𝒏𝑇𝒍𝑖 

𝑓(𝒏𝑇𝒍𝑖) 

𝐼 

𝒏𝑇𝒍 

𝑒𝑖′ 

𝑔(𝐼𝑖) 

Fig. 3. A 2-D point (nT li, Ii) can be represented by both
the forward image formation model (Ii = f(nT li) + ei)
and the inverse image formation model (nT li = g(Ii)+e

′
i).

The illustration indicates that they are uniquely convertible
if the reflectance function is monotonic.

Here, ‖ · ‖0 represents the `0-norm, which counts the num-
ber of non-zero entries in a vector. To reiterate, Eq. (17)
builds on the assumption that images are captured under
known lighting conditions and any non-diffuse corruptions
have sparse structure. If these assumptions are not true (e.g.,
because of imperfect lighting calibration, no dominant diffuse
structure, etc.), then the hard constraint in Eq. (17) is no longer
appropriate. To compensate for more modeling errors, we relax
the hard constraint via an additional model mismatch penalty
giving

min
x,e′
‖W (Ax+ e′ − y)‖2 + λ‖e′‖0 s.t. e′(m+1) = 0, (18)

where λ is a nonnegative trade-off parameter balancing data
fit with sparsity. Note that in the limit as λ → 0, problems
(17) and (18) are equivalent (the limit must be taken outside
of the minimization). Eq. (18) entails a difficult, combinatorial
optimization problem that must be efficiently solved at every
pixel. Here we consider two alternatives to brute force ex-
haustive search. First, in the machine learning and statistics
literature, it is common to replace the discontinuous, non-
convex `0 norm with the convex surrogate `1 norm. The `1
norm of a vector z is given by

∑
i |zi|, which constitutes

the tightest convex approximation to the `0 norm. In certain
situations the resulting estimate will closely match the solution
to Eq. (18); however, in the context of photometric stereo this
substitution may not always be adequate (see Section 3.5 for
more details). Secondly, we can apply a simple hierarchical
Bayesian approximation to estimate x while simultaneously
accounting for e′. This formulation, a generalized version of
sparse Bayesian learning (SBL) [43], is described in detail
next.

3.4 Recovery of Normals and Corruptions Via SBL

We assume the standard Gaussian likelihood function for the
first-level, diffuse errors giving

p(y|x, e′) = N(y;Ax+ e′, λW−1), (19)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. *, NO. *, *** 2013 6

Note that we define W−1 , diag[1, · · · , 1, 0] ∈
R(m+1)×(m+1). We next apply an independent, zero-mean
Gaussian prior distributions on both x and e′:

p(x) = N(x;0,Σx), p(e′) = N(e′;0,Γ). (20)

Σx describes the prior variance of the unknown normal vector
n and model parameters a as Σx = diag(σ2

nI(3), σ
2
aI(p))

where I(k) ∈ Rk×k is the identity matrix; they are fixed
to convey our lack of a priori certainty about x. Thus
the prior on x will be relatively uninformative. The values
of σ2

n and σ2
a will be discussed further below. In contrast,

Γ , diag[γ] is a fully-parameterized, diagonal matrix, where
γ , [γ1, . . . , γm+1]T is a non-negative vector of variances
in one-to-one correspondence with elements of e′. A large
variance γi indicates that the corresponding e′i is free to reflect
the data, compensating for non-diffuse effects (outliers), while
a small or zero-valued variance implies that the associated
error term is constrained near zero (inliers). While we are
ignorant of which observations are outliers, γ(m+1) is fixed to
be zero because of the constraint regarding e′(m+1) in Eq. (18).

Combining the likelihood and prior using Bayes’ rule leads
to the posterior distribution p(x, e′|y) ∝ p(y|x, e′)p(x)p(e′).
To estimate x, we may further marginalize over e′ to give

p(x|y) =

∫
p(x, e′|y)de′ = N(x;µ,Σ), (21)

with mean and covariance defined as

µ = ΣAT
(
Γ + λW−1

)−1
y, (22)

Σ =
[
Σ−1x +AT

(
Γ + λW−1

)−1
A
]−1

.

We now have a convenient closed-form estimator for x given
by the posterior mean. The only issue then is the values for
the unknown parameters Γ. Without prior knowledge as to the
locations of the sparse errors, the empirical Bayesian approach
to learning Γ is to marginalize the full joint distribution over
all unobserved random variables, in this case x and e′, and
then maximize the resulting likelihood function with respect
to Γ [43]. Equivalently, we will minimize

L(Γ) , − log

∫
p(y|x, e′)p(x)p(e′)dxde′

≡ log |Σy|+ yTΣ−1y y (23)

with Σy , AΣxA
T + Γ + λW−1,

with respect to Γ. While L(Γ) is non-convex, optimization
can be accomplished by adapting a majorization-minimization
approach from [44] to the photometric stereo problem. This
technique essentially involves the construction of rigorous
upper bounds (see below) on each of the two terms in
Eq. (23) using auxiliary variables z , [z1, . . . , zm+1]T and
u , [u1, . . . , um+1]T (the EM algorithm can be viewed as
a special case). For fixed values of z and u, a closed form
solution for Γ exists. Likewise, for a fixed value of Γ, the
auxiliary variables can be updated in closed form to tighten
the upper bound around the current Γ estimate.

While some details are omitted for brevity, using results
from convex analysis it can be shown that for all u ≥ 0,

log |Σy| = log |Γ|+ log
∣∣AΣxA

T + λW−1
∣∣

+ log
∣∣∣Γ−1 +

(
AΣxA

T + λW−1
)−1∣∣∣

≤ log |Γ|+ log
∣∣AΣxA

T + λW−1
∣∣

+
∑
i

ui
γi
− h∗(u)

≡
∑
i

(
ui
γi

+ log γi

)
− h∗(u), (24)

where h∗(z) denotes the concave conjugate function [45] of
h(β) , log

∣∣∣diag[β] +
(
AΣxA

T + λW−1
)−1∣∣∣ and we have

removed irrelevant factors independent from u or γ. It can be
shown that equality (and therefore the minimum of the right-
hand side) is obtained in Eq. (24) if and only if

u = diag
[
Γ−1 +

(
AΣxA

T + λW−1
)−1]−1

. (25)

In a somewhat related fashion, the second term in L(Γ) can
be upper-bounded via

yTΣ−1y y ≤ (y − z)
T (
AΣxA

T + λW−1
)−1

(y − z)

+
∑
i

z2i
γi
, (26)

which holds for all z, with equality if and only if

z = ΓΣ−1y y. (27)

Now with z and u fixed, the overall upper bound on L(Γ)
decouples and we can solve for each γi individually by
collecting the γ-dependent terms from Eq. (24) and Eq. (26),
leading to the problem

min
γi≥0

z2i + ui
γi

+ log γi, (28)

which has a simple closed-form solution.
Combining all of the above, and using matrix inversion for-

mulae to produce numerically efficient computations, produces
update rules for the (k + 1)-th iteration given by

γ
(k+1)
i ←

(
z
(k)
i

)2
+ u

(k)
i ,∀i, Γ(k+1) = diag[γ(k+1)]

z(k+1) ← Γ(k+1)
(
S(k+1)

)−1
y (29)

u(k+1) ← diag
[
Γ(k+1) −

(
Γ(k+1)

)2 (
S(k+1)

)−1]
,

where S(k+1) is computed via

S(k+1) = D −DA
[
Σ−1x +ATDA

]−1
ATD

and D , (Γ(k+1) + λW−1)−1. (30)

These expressions only require O(n) computations and are
guaranteed to reduce L(Γ) until a fixed point Γ∗ is reached.
This value can then be plugged into Eq. (22) to estimate the
unknown normal vector and model parameters. We denote this
point estimator as xsbl. If the variances Γ∗ reflect the true
profile of the sparse errors, then xsbl will closely approximate
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the true surface normal. This claim will be quantified more
explicitly in the next section.

We have thus far omitted details regarding the choice of
λ, σ2

n and σ2
a. The first one can be reasonably set according

to our prior expectations regarding the magnitudes of diffuse
modeling errors, but in practice there is considerable flexibility
here since some diffuse errors will be absorbed into e′. In
contrast, we can realistically set σ2

n →∞, which implies zero
precision or no prior information about the normal vectors
and yet still leads to stable, convergent update rules. However
we have observed that on certain problems a smaller selection
for σ2

n can lead to a modest improvement in performance,
presumably because it has a regularizing effect that smoothes
out the cost function and improves the convergence path of
the update rules from Eq. (29). Interestingly and perhaps
counter-intuitively, in certain situations it does not alter the
globally optimal solution as discussed below. It is also possible
to learn σ2

n using similar updates to those used for Γ, but
this introduces additional complexity and does not improve
performance.

Finally, we discuss the effects of σ2
a on our algorithm. Since

the value of σ2
a regularizes the shape of the piecewise linear

function Eq. (10), smaller values will prevent the reverse of
the sign of each linear segment and enforce the monotonicity
of the function. While too small of a σ2

a may limit the
generality of g(I), it can be proven that as σ2

a → 0 the model
naturally reduces to a simple, Lambertian form for the diffuse
component. We will empirically determine an appropriate
value for σ2

a in Section 4.3.

3.5 Analytical Evaluation

Previously we discussed two tractable methods for solving
Eq. (18): a convex `1-norm-based relaxation and a hierarchical
Bayesian model called SBL. This section briefly discusses
comparative theoretical properties of these approaches relevant
to the photometric stereo problem. To facilitate the analysis,
here we consider the idealized case where there are no diffuse
modeling errors, or that λ is small. In this situation, the basic
estimation problem reverts back to Eq. (17).

If the lighting directions and sparse errors are in general
position, meaning they are not arranged in an adversarial con-
figuration with zero Lebesgue measure, then it can be shown
that the minimizer of Eq. (17), denoted x0, is guaranteed to
be the correct normal vector as long as the associated feasible
error component e′ = y − Ax0 satisfies ‖e′‖0 < m− p− 2.
Therefore, a relevant benchmark for comparing photometric
stereo algorithms involves quantifying conditions whereby a
candidate algorithm can correctly compute x0.

In this context, recent theoretical results have demonstrated
that any minimizer x1 of the `1 relaxation approach will
equivalently be a minimizer of Eq. (17) provided ‖e′‖0 is
sufficiently small relative to a measure of the structure in
columns of the matrix A [46]. Unfortunately however, for
typical photometric stereo problems the requisite equivalency
conditions often do not hold (i.e., ‖e′‖0 is required to be
prohibitively small) both because of structure imposed by the
lighting geometry and implicit structure that emerges from the

relatively small dimensionality of the problem (meaning we do
not benefit from asymptotic large deviation bounds that apply
as m becomes large). Fortunately, SBL offers the potential for
improvement over `1 via the following result.

Theorem: For all σ2
n, σ

2
a > 0 (and assuming λ→ 0), if Γ∗ is

a global minimum of Eq. (23), then the associated estimator
xsbl will be a global minimum of Eq. (17). Moreover, for σ2

n

and σ2
a sufficiently large it follows that: (i) Any analogous

locally minimizing SBL solution is achieved at an estimate
xsbl satisfying ‖y − Axsbl‖0 ≤ m − p − 2, (ii) SBL can
be implemented with a tractable decent method such that
convergence to a minimum (possibly local) that produces an
xsbl estimator as good or better than the global `1 solution is
guaranteed, meaning ‖y −Axsbl‖0 ≤ ‖y −Ax1‖0.

The proof, which has been omitted for brevity, is relatively
straightforward and uses block-matrix inverse and determinant
identities, as well as ideas from [46], to extend SBL properties
derived in [47] to problems in the form of Eq. (17). We
may thus conclude that SBL can enjoy the same theoretical
guarantees as the `1 solution yet boosted by a huge potential
advantage assuming that we are able to find the global min-
imum of Eq. (23), which will always produce an xsbl = x0,
unlike `1.

There are at least two reasons why we might expect this
to be possible based on insights drawn from [47]. First, as
discussed previously, A will necessarily have some structure
unlike, for example, high dimensional random matrices. In
this environment SBL performance is often vastly superior to
`1 because it can be shown to be implicitly based on an A-
dependent sparsity penalty that can compensate, at least in
part, for structure in A. Secondly, the sparse errors e′ will
likely have substantially different magnitudes depending on
image and object properties (meaning the non-zero elements
of e′ will not all have the same magnitude), and it has been
shown that in this condition SBL is more likely to converge
to the global minimum [47].

4 EXPERIMENTAL RESULTS

In this section, we quantitatively evaluate our method on
synthetic and real image data. All experiments were performed
on an Intel Core2 Duo E6400 (2.13GHz, single thread) ma-
chine with 4GB RAM and were implemented in MATLAB.
For the SBL- and `1-based methods we used λ = 1.0−6 in
the synthetic experiments with no additive image noise and
perfect lighting calibrations (Section 4.2 and Section 4.3), and
λ = 10−2 for the other cases (Section 4.4). We set σ2

n = 106

for all experiments. As for σ2
a, which can affect the solution

when p > 1, we experimentally find the optimal value in
Section 4.3-(a).

4.1 Datasets

For quantitatively evaluating our method, four different
datasets are used. We generate 32-bit HDR images of two
target scenes, Bunny (256 × 256) and Caesar (300 × 400),
illuminated under random directional lightings. We use a few
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(c) SBL (e) R-PCA (f) LS

(g) SBL (i) R-PCA (j) LS

(d) L1

(h) L1

(a) Ground Truth

(b) Input

1.0

0.0

Fig. 4. Recovery of surface normals from 40 images of Caesar (300× 400) in dataset (A) with explicit shadow removal.
(a) Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).

TABLE 1
Experimental results of Bunny (left) / Caesar (right) in dataset (A) with varying number of images.

No. of 

images 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

5 6.0 6.0 15.3 7.0 4.7 4.3 10.7 4.8 46.5 13.6 15.7 4.6 

10 0.09 0.61 3.8 1.9 0.27 0.58 0.81 1.8 36.3 13.6 37.8 5.9 

15 0.076 0.16 0.21 1.6 0.052 0.13 0.19 1.6 26.8 13.1 55.1 6.3 

20 0.033 0.080 0.11 1.6 0.022 0.078 0.11 1.6 24.2 13.5 70.5 6.9 

25 0.018 0.055 0.084 1.6 0.010 0.048 0.069 1.6 23.1 14.1 86.0 7.6 

30 0.012 0.037 0.080 1.7 0.0048 0.032 0.065 1.7 23.1 14.2 121.0 8.4 

35 0.0057 0.023 0.098 1.6 0.0029 0.019 0.093 1.6 22.7 14.6 161.3 8.5 

40 0.0039 0.019 0.12 1.6 0.0020 0.015 0.12 1.6 22.6 15.0 200.7 9.4 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

6.2 6.0 26.2 7.4 4.73 4.63 31.0 4.97 106.4 34.2 45.8 15.9 

0.24 0.40 10.7 0.94 0.19 0.26 1.8 0.93 97.2 34.1 93.7 19.2 

0.044 0.11 2.6 0.77 0.047 0.083 0.14 0.76 67.0 31.4 153.3 22.0 

0.018 0.051 0.079 0.76 0.015 0.035 0.065 0.72 60.9 32.7 177.5 23.3 

0.011 0.034 0.068 0.76 0.0081 0.023 0.059 0.76 57.9 34.3 196.9 25.1 

0.0063 0.018 0.043 0.77 0.0082 0.018 0.043 0.77 58.1 33.2 231.7 27.7 

0.0045 0.012 0.036 0.78 0.0031 0.0084 0.033 0.80 58.4 34.5 259.2 29.4 

0.0031 0.0094 0.037 0.76 0.0019 0.0063 0.034 0.78 59.6 35.2 281.2 31.5 

different BRDF settings for rendering; (A) combination of
Lambertian diffuse reflection and specularity of the Cook-
Torrance reflectance model [48], (B) combination of Lafortune
diffuse reflection [49] and Cook-Torrance specularity, and (C)
MERL BRDF database [41]. Additionally, as the forth dataset,
denoted (D), we record real images for qualitatively evaluating
our method in a practical scenario. For the datasets (A), (B),
and (C), both cast shadows and attached shadows are also
rendered. Note that though light calibration is noise-free, and
shadowed pixel intensities are exactly zero in the synthesized
datasets, some calibration errors and non-zero shadowed pixels
exist in the real data (D).

4.2 Performance Evaluation with p = 1

We begin with the simplest case where the number of basis
functions in the piecewise linear model is one i.e., the diffuse
function is assumed to be Lambertian. We evaluate perfor-
mance using the synthesized images in dataset (A), which
has Lambertian diffuse reflections along with non-Lambertian

specularities and shadows. Here we compare our SBL-based
and convex `1-norm-based sparse regression models from
Sections 3.3 and 3.4 with the recent R-PCA-based method
proposed by Wu et al. [6], which attempts the simultaneous
recovery of a low-rank Lambertian factor and sparse cor-
ruptions. We also compare with the standard least squares
(LS) Lambertian photometric stereo estimator [1], which is
equivalent to solving Eq. (14) with p = 1.

We change experimental conditions with regard to the
number of images, surface roughness (i.e., the ratio of
specularities), shadow removal (i.e., whether or not a shadow
mask is used to remove zero-valued elements from the
observed images), and the presence of additional Gaussian
noise. Note that when in use as defined for each experiment,
the shadow mask is applied equivalently to all algorithms.
To increase statistical reliability, all experimental results are
averaged over 20 different sets of 40 input images. While
the amount of cast/attached shadows are fixed to 24.0%
and 27.8% of the number of all the pixels, respectively, the
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(a) Ground Truth (c) SBL (e) R-PCA (f) LS

(g) SBL (i) R-PCA (j) LS

(d) L1

(h) L1(b) Input

1.0

0.0

Fig. 5. Recovery of surface normals from 40 images of Bunny(256×256) in dataset (A) without explicit shadow removal.
(a) Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).

(a) Ground Truth (c) SBL (e) R-PCA (f) LS

(g) SBL (i) R-PCA (j) LS

(d) L1

(h) L1(b) Input

1.0

0.0

Fig. 6. Recovery of surface normals from 40 images of Bunny in dataset (A) with explicit shadow removal and additive
Gaussian noises (30%). (a) Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).

percentage of specularities depends on the surface roughness
parameter that is independently selected in each experiment.
To quantitatively evaluate the performance, we compute the
angular error between the recovered normal map and the
ground truth.

Valid number of images for efficient recovery in the
presence of specularities
In this experiment, we vary the number of images to estimate
the minimum number required for effective recovery when
using the shadow mask with fixed surface roughness. The
percentage of specular pixels in Bunny and Caesar are 8.4%
and 11.6%, respectively.

Once 40 images are generated for each dataset, the image
subset is randomly subsampled without replacement. The
results are displayed in Table 1 and Fig. 4. We observe that
the sparse-regression-based methods are significantly more

accurate than both R-PCA and LS. It is also clear that SBL
is more accurate than `1, although somewhat more expensive
computationally.1 Note that, although not feasible in general,
when the number of images is only 5, the most accurate
and efficient implementation for regression could be to just
systematically test every subset of 3 images (i.e., brute force
search only requires 10 iterations at each pixel).

Robustness to shadows and image noise
We now evaluate the robustness of our method against
corruptions; shadows and image noise. We set two conditions
for evaluating the effects of (i) shadows (fixed specularities, no
shadow removal, no image noise), (ii) additive Gaussian image

1. The SBL convergence rate can be slower with fewer images because of
the increased problem difficulty. This explains why the computation time may
actually be shorter with more images.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. *, NO. *, *** 2013 10

TABLE 2
Results of Bunny in dataset (A) without shadow removal.

No. of 

images 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

5 5.2 11.9 12.1 12.1 5.0 12.3 12.5 12.5 213.0 37.0 45.8 5.1 

10 2.8 5.6 10.9 10.9 2.3 5.6 11.3 11.3 98.9 33.0 93.7 6.0 

15 1.9 4.0 9.9 10.0 2.3 4.0 10.1 10.2 66.8 32.5 153.3 7.4 

20 1.2 2.7 9.4 9.5 1.0 2.7 9.6 9.6 52.9 30.0 177.5 7.6 

25 0.81 1.9 8.9 9.0 0.69 1.8 8.9 9.0 46.2 31.0 196.9 9.1 

30 0.62 1.6 9.0 9.1 0.61 1.5 8.9 8.9 41.1 32.0 231.7 9.4 

35 0.59 1.5 9.1 9.1 0.58 1.4 9.3 9.3 41.1 34.4 259.2 11.0 

40 0.53 1.2 8.8 8.9 0.58 1.2 9.0 9.1 39.4 33.3 281.2 10.7 

TABLE 3
Experimental results of Bunny in dataset (A) with varying

amount of additive Gaussian noises.

 Dens. of 

noises (%) 

Mean error (in degrees) Median error (in degrees) 

SBL L1 R-PCA LS SBL L1 R-PCA LS 

10 0.0079 0.040 0.16 3.3 0.0060 0.039 0.16 3.3 

20 0.021 0.11 0.79 4.4 0.019 0.099 0.80 4.3 

30 0.068 0.29 3.6 5.3 0.060 0.25 3.2 5.2 

40 0.21 0.70 9.8 6.2 0.18 0.63 9.9 6.1 

50 0.58 1.5 11.7 7.0 0.53 1.4 11.7 6.9 

0 

5 

(a) (b) (c) (d) (e) 
0 

10 

Fig. 7. Comparison between SBL and `1-based method. Error maps of (a) SBL and (b) L1 (in degrees). The per-pixel
number of (c) specularities, (d) shadows, (e) corruptions (The maximum is 5). These maps are illustrated based on
one of twenty datasets.

noise (fixed specularities, explicit shadow removal, varying
amount of image noise). The ability to estimate surface
normals without an explicit shadow mask is important, since
in practical situations shadow locations are not always easy
to be determined a priori. The number of images is 40 in (ii)
and varying from 5 to 40 in (i). We use Bunny for evaluation,
and the ratio of specularities is 8.4% in (i) and (ii), and image
noise is 10% to 50% in (ii). Image noise obeys a zero-mean
iid Gaussian distribution with σ2 = 0.1.

The results are illustrated in Fig. 5, Fig. 6, Table 2 and
Table 3. While performance of each method degrades when ad-
ditional corrupted pixels (outliers) contaminate the estimation
process, our sparse regression methods outperform both R-
PCA and LS in accuracy and outperform R-PCA in efficiency
in the presence of shadows and noise. We observe that the
performance of R-PCA degrades when a shadow mask is
unavailable (i.e., the positions of missing entries are unknown)
while our sparse-regression based method automatically com-
pensates for missing entries in the estimation process.

We also observe that SBL is more accurate than `1 in all
conditions with slight more expense of computational effort.
We further compare the results of SBL and `1 using the case
where the number of images is 5 without removing shadows.
The error maps and the numbers of corruptions per-pixel are
displayed in Fig. 7. We observe that the `1 method typically
suffer from shadows while SBL can find the correct solution
in most pixels as long as the number of corruptions is less
than 3, which is the theoretical limit when only 5 observations
are given.

Sparseness of corruptions
While it does not often occur, our assumption that corruptions
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Fig. 8. Experimental results of Bunny in dataset (A) with
varying amount of specularities. The x-axis and y-axis
indicate the ratio of specularities and the mean angular
error of normal map.

appear sparsely over images can be violated in some
situations, e.g., observations include wide-lobe specularities.
In this experiment, we examine how our approach is affected
by the sparseness of corruptions by changing the width of
the specular lobe (i.e., percentage of specularities appeared
in observations). Here, we use Bunny dataset whose amount
of specularities is varying from 10% to 60%, respectively, by
appropriately choosing the model parameter of Cook-Torrance
reflectance model. In this experiment, we remove shadows
explicitly to factor out their effect.

The result is illustrated in Fig. 8. As expected, performance
of both SBL and `1 degrades as the ratio of specular
corruptions increases. However, even when the sparseness
of outliers is difficult to be held, we observe that our
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sparse-regression based method still outperforms R-PCA and
LS.

Comparison with RANSAC-based approaches
We also compared our approach with two different RANSAC-
based methods. Here we use 40 images of Bunny dataset
whose percentage of specular pixels is 8.4%. Shadows are
removed and images noises are not added in this experiment.

The first one is a photometric linearization approach [3],
which converts an input image into the ideal Lambertian
image. It uses RANSAC for robustly identifying the basis
images in the presence of non-Lambertian corruptions. Once
linearized images are acquired, the standard Lambertian-based
approach [1] is applied with known lightings to estimate
surface normals. The second one uses RANSAC more di-
rectly in Lambertian photometric stereo method like [21]. In
this approach, three images are randomly sampled for each
position independently, and the surface normal and albedo are
estimated from them using Lambertian photometric stereo [1].
Then the Euclidean distances between observations and pre-
dicted intensities are computed, and the number of inliers
whose distances are less than a threshold are counted. After
the sampling process, the surface normal and albedo with the
maximum number of inliers are adopted.

The results are summarized in Table 4 and Table 5, respec-
tively. We have also included standard deviations in the tables
for observing the estimation stability. We observe in Table 4
that although we use a large number of samples for RANSAC
(e.g., 2000) for the photometric linearization, this approach
cannot always stably find the solution especially when the
number of images is large. On the other hand, our method
is able to successfully and efficiently finds the solution. We
also observe in Table 5 that a large number of samples (e.g.,
200) gives very accurate estimation while it takes much time
to compute it. The smaller number of samples gives more
efficient but less accurate estimation. When the number of
samples is 20, the computational cost is almost same as our
SBL-based method, but the mean error is 50 times larger
than ours, which also demonstrates the effectiveness of the
proposed method.

It is also crucial to emphasize that the RANSAC algorithm
scales very poorly as the number of inlier model parameters
is increased. Simply put, a larger number of inlier random
samples is required to robustly estimate a larger number
of model parameters, and obtaining such inlier samples be-
comes combinatorially more difficult in higher dimensions.
Consequently, while RANSAC may work reasonably well
here recovering surface normals under a Lambertian diffusive
model (where the number of unknowns is effectively only 3), it
will become intractable when using more complex reflectance
models, which is a central concern herein. In contrast, our
method scales linearly in the number of inlier parameters and
can therefore be robustly expanded to handle non-Lambertian
parameterized reflectance functions with outliers, e.g., the p >
1 model detailed in Section 4.3 or other more sophisticated
extensions.

TABLE 4
Comparison with RANSAC based approach [3] with
Bunny in dataset (A) (Number of samples is 2000).

No. of 

Images 

Mean error  Median error  Standard deviation Elapsed time 

SBL [3] SBL [3] SBL [3] SBL [3] 

5 6.0 6.7 4.7 5.4 4.1 4.4 46.5 52.3 

10 0.09 0.74 0.27 0.38 0.35 1.4 36.3 544.0 

15 0.076 0.61 0.052 0.12 0.059 1.9 26.8 958.4 

20 0.033 0.70 0.022 0.058 0.027 1.2 24.2 1048.9 

25 0.018 1.0 0.010 0.063 0.020 2.6 23.1 1141.8 

30 0.012 2.3 0.0048 0.042 0.012 4.0 23.1 1227.8 

35 0.0057 3.2 0.0029 0.051 0.0064 9.2 22.7 1327.9 

40 0.0039 2.1 0.0020 0.046 0.0048 4.3 22.6 1430.4 

TABLE 5
Performance of RANSAC based approach [21] with

Bunny in dataset (A) (Number of images is 40).

No. of Samples Mean error Median error 
Standard 

deviation 

Elapsed 

time 

200 0.000019 7.9E-06 0.000027 283.0 

100 0.0035 7.6E-06 0.31 142.4 

80 0.0099 7.6E-06 0.70 115.2 

60 0.019 7.6E-06 0.98 86.0 

40 0.034 7.3E-06 1.2 57.9 

20 0.22 7.4E-06 3.4 29.8 

10 0.51 7.5E-06 5.0 15.6 

4.3 Performance Evaluation with p > 1

If the majority of observations are represented by non-linear
diffuse reflections, then piecewise linear sparse regression with
p > 1 basis functions or segments is expected to be consid-
erably more effective. In this experiment, we evaluate the p-
functions piecewise sparse linear regression to those complex
objects by using the dataset (B) rendered with non-linear
Lafortune diffuse reflectance model [49] and Cook-Torrance
Reflectance model, and (C) rendered with one hundred BRDF
functions from the MERL BRDF database [41].

We generate 32-bit HDR images of Bunny (256 × 256)
scene with Lafortune diffuse reflectance and Torrance sparrow
specularities under 40 different lightings in dataset (B), and
100 different lightings for 100 different materials in dataset
(C). Note that the average percentage of specularities in dataset
(B) is 8.4% and 24.0% of cast/attached shadows are rendered
in both dataset (B) and dataset (C).

Here, in addition to the SBL-based piecewise linear sparse
regression (PL-SBL), we further implement the method which
is solving Eq. (14) (PL-LS). We compare our methods with
the R-PCA-based method [6] and a recent parametric non-
Lambertian photometric stereo method with biquadratic re-
flectance model [11], which reasonably represents the low-
frequency of non-linear reflectance though shadows and high-
frequency observations must be removed in advance. The
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biquadratic model is a approximated BRDF as follow,

I = α1(nT l)2(lTh)2 + α2(nT l)2(lTh) + α3(nT l)2

+ α4(nT l)(lTh)2 + α5(nT l)(lTh) + α6(nT l)

+ α7(lTh)2 + α8(lTh) + α9,

(31)

where h is a half vector directed at l + v and
α , [α1, α2, . . . , α9] are model parameters. In the
implementation of [11], we used the non-shadowed pixels
whose intensities are ranked below the 25%, and both
surface normals and model parameters are iteratively updated
initialized by the Lambertian photometric stereo method. Note
that, shadowed pixels are also rejected, but all observations
are taken into account in other methods.

Choosing σ2
a and p

Here we examine the choices for σ2
a and for the number

of basis functions p in piecewise linear model by using
dataset (C). Note that if p is large enough, we can essentially
represent any complex non-linear function, although we run
the risk of over-fitting when m is too small. However, we can
always compensate to some extent via σ2

a, since regardless
of p, for σ2

a sufficiently small we approximate the standard
Lambertian model with all linear segments having equal
slope, and therefore equal diffuse albedo.

In this experiment, we vary individually σ2
a and p to find

the optimal parameters. The results are illustrated in Fig. 9.
Here, average angular errors in each normal map are further
averaged over 100 materials. We observe that as expected, too
small σ2

a deteriorates the performance, yet does not affect the
performance when the value is sufficiently large. Therefore,
in the following experiments, we fix σ2

a by 1.0. As for the
number of basis functions, it appears that p = 3 is optimal in
the case of dataset (C).

We also illustrate per-material angular errors with different
p in Fig. 10. We observe that piecewise linear function with
many basis functions, e.g., 6, works very well under the
material with narrow specular peaks, e.g., for (1) specular-
white-phenolic and (4) gray-plastic, while it suffers from
over-fitting in polished metal with the broad specularity, e.g.,
for (82) silver-metallic paint or materials with complex 2-lobe
BRDF, e.g., (53) natural-209 and (83) ipswich-pine-221),
where we can hardly see the underlying monotone diffuse
structure in observations.

Quantitative comparison with other methods
We evaluate of the performance of our method by a numerical
comparison with other methods using datasets (B) and (C).
Here, our methods (PL-SBL, PL-LS) are compared with the
biquadratic photometric stereo method by Shi et al. [11]
(Biquadratic), LS and R-PCA (R-PCA is included only for
dataset (C)).

First, we use dataset (B) to verify that our inverse piece-
wise linear diffuse model reasonably handles non-Lambertian
diffuse reflections. In the Lafortune model [49], a general
rotationally symmetric diffuse component ρd is written as
ρd = (nT l)k(nTv)k. Here k is a model parameter which
is fixed to 3.0 in our experiment. Note that specularities of
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Fig. 9. Experimental results of dataset (B) with different
values of p and σ2

a. The results are averaged over 100
different materials.

dataset (B) are also rendered with Cook-Torrance model in
the same manner with dataset (A). Therefore we can consider
dataset (B) as a combination of dominant general diffuse
reflections and sparse specular reflections.

The results are illustrated in Fig. 11 and Table 6. We present
the results of PL-SBL with p = 1 and p = 3, and PL-LS with
p = 3. Note that PL-LS with p = 1 is exactly same with
LS. We observe that while non-Lambertian diffuse reflections
degrade the performances of LS and PL-SBL(p = 1), Bi-
quadratic, PL-LS(p = 3) and PL-SBL(p = 3) work better since
they are potentially capable of non-Lambertian reflections.
We also observe that PL-SBL(p = 3) performs best since
the estimation of Biquadratic and PL-LS are disrupted by
specularities which are not included in each model while the
sparsity penalty in PL-SBL(p = 3) reasonably neglects them
as the model outlier.

Secondly, we evaluated the performance of our method by
using datsaet (C). The results are illustrated in Fig. 12. We
observe that while SBL(p = 1) outperforms R-PCA and LS
in most of materials, the average angular errors are large for
various complex materials. In contrast, PL-SBL(p = 3) works
better for those kind of objects since the piecewise linear func-
tion with several basis functions can capture the nonlinearity
of the non-Lambertian diffuse structure. We also observe that
the Biquadratic model is the most effective method of all for
dataset (C), however we emphasize that our method achieves
competitive performance even without heuristically filtering
high-frequency specularities. Consequently, on real images our
approach produces qualitatively superior results (see Section
4.4 below). Finally, we can see from the comparison between
PL-LS(p = 3) and PL-SBL(p = 3) that the sparsity penalty
is also helpful for large p in our method, which can reject
specularities efficiently.

We also compare our method with others in the presence
of shadows and image noises. The results are illustrated in
Table 7. We observe that our SBL-based methods still work
under attached/cast shadows and image noises in contrast
that Biquadratic and least-squares-based methods are easily
disrupted by those corruptions.
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Fig. 10. Experimental results of dataset (C) under the different number of basis functions [41]. We aligned results in
ascending order of mean angular error of PL-SBL(p = 3). Some rendered images corresponding to each material ID
are also illustrated.

(a) Ground Truth (c) LS (e) PL-SBL (p=1) (f) PL-LS (p=3)

(h) LS (j) PL-SBL (p=1) (k) PL-LS (p=3)

(d) BQ

(i) BQ(b) Input

10.0

0.0
(l) PL-SBL (p=3)

(g) PL-SBL (p=3)

Fig. 11. Recovery of surface normals from 40 images of Bunny in dataset (B) with explicit shadow removal. (a) Input,
(b) Ground truth, (c)-(l) Recovered surface normals and Error maps (in degrees).
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Fig. 12. Comparison among different methods with dataset (C). We aligned results in ascending order of mean angular
error of PL-SBL(p = 3). Some rendered images corresponding to each material ID are also illustrated.

TABLE 6
Comparison among different methods with dataset (B).

No. of 

Images 

Mean error (in degrees) 

LS BQ 
PL-SBL 

(p=1) 

PL-LS 

(p=3) 

PL-SBL 

(p=3) 

5 4.9 6.9 5.4 25.1 6.0 

10 3.7 4.4 3.3 2.6 1.5 

15 3.7 3.5 3.5 1.4 0.80 

20 3.8 2.8 3.6 1.3 0.67 

25 3.8 2.2 3.6 1.3 0.58 

30 3.7 1.9 3.5 1.2 0.49 

35 3.8 1.7 3.6 1.2 0.47 

40 3.8 1.6 3.7 1.2 0.49 

TABLE 7
Experimental results of dataset (C) under the different

kind of corruptions. This table illustrates average angular
errors of surface normals for 100 materials.

  

Mean error (in degrees) 

LS SBL (p=1) Biquadratic 
PL-LS 

(p=3) 

PL-SBL 

(p=3) 

w/o shadow and noise 13.9 8.9 2.9 4.4 4.1 

w/ shadow 14.3 7.7 44.0 28.0 10.5 
w/ noise 35.8 8.2 11.0 14.1 4.8 

4.4 Qualitative Evaluation with Real Images
We also evaluate our algorithm (PL-SBL) using real images
(dataset (D)). We captured RAW images without gamma cor-
rection by Canon 30D camera with a 200[mm] tele-photo lens
and set it 1.5[m] far from target object. Lighting conditions
are randomly selected from a hemisphere whose radius is
1.5[m] with the object placed at the center. For calibrating
light sources, a glossy sphere was placed in the scene. We
use a set of 25 images of Chocolate bear (261× 421), and 40
images each of Doraemon (269×420) and Fat guy (293×344).
Note that in this experiment, we did not remove shadows from
images by zero-intensity thresholding since even shadowed
pixels have non-zero values due to the presence of slight am-
bient illumination, sensor satiations, low signal-to-noise ratio,
inter-reflections between the object and the floor and so on.
Therefore, we sort all observations in increasing order and use
lowest 25% of observations for the low-intensity condition of
Biquadratic (low). We also applied the biquadratic reflectance
model using all observations denoted as Biquadratic (all). We
evaluate the performance of PL-SBL by visual inspection of
the output normal maps and recovered surface meshes by a
poisson solver [50], which recovers surface meshes from a
gradient map.

The results are illustrated in Fig. 13. First, we observe that
PL-SBL(p = 1, p = 3) succeeds in efficiently rejecting specu-
larities and estimating smoother and more reasonable normal
maps. While Biquadratic (low) has produced the highest
performance in Section 4.4(b), it has substantial difficulty with
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real images where calibration errors, shadowed pixels, and
sensor saturations are often mis-classified as low-frequency
reflectance, leading to unpredictable errors in practice (see Ta-
ble 7). We note that increasing the threshold for shadow
removal might solve this problem, but the optimal thresh-
old selection remains hard and scene-dependent. Although
including higher frequency observations may sometimes give
better results by diluting low-frequency corruptions with a
larger number of samples (see Biquadratic (all)), accurate
estimation still remains hard since the simple biquadratic
model has difficulty representing complex, non-linear high-
frequency observations (as is mentioned in [11]).

Second, we observe that reconstructed surface meshes by
PL-SBL(p = 3) are more reasonable than PL-SBL(p = 1) e.g.,
the stomach of fatguy recovered by PL-SBL(p = 1) is shaper
than that of PL-SBL(p = 3), though we can not make the
further quantitative comparison due to the lack of the ground
truth. From those observations, we can say that our method is
effective, especially when p > 1, in the practical situation.

5 CONCLUSION

In this paper, we have proposed the inverse piecewise linear
sparse regression based photometric stereo method which
works under various kind of non-diffuse corruptions. At first,
we presented a special case of Lambertian-based sparse regres-
sion which consider all kind of non-Lambertian corruptions
as outliers. Our detailed discussion and experimental results
has shown that our method are not only robust to those
kind of corruptions, but also computationally more efficient
and stable comparing than other robust approaches. However,
since Lambertian sparse regression could not handle non-
Lambertian materials, we have secondly discussed the general
case where the piecewise linear function has several basis
functions. Our extensive evaluation with both synthetic and
real images indicated that our method works not only for
various non-diffuse corruptions, but also real images where
the shadow removal is not easy.

Our current limitation is that we assume the existence of the
unique dominant diffuse structure in observations. Therefore
our method cannot potentially handle materials with unknown
dominant structure e.g., materials with unknown BRDF where
dominant structure is specularities or 2-lobe BRDF which is
represented by a sum of several functions whose dominant
directions are unknown polyethylene and natural ones like
fabrics. We are very interested in extending our work to handle
those complex materials. The other interesting direction of our
future work is applying our method to the uncalibrated case
since we currently assume that the lighting environment is
calibrated. Since the simple structure of our image formation
model have the possibility to be combined with other known
constraints such as isotropy symmetry, it seems that the re-
alization of the uncalibrated photometric stereo method for
general diffuse materials is not impossible.
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