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Abstract. This paper presents a photometric stereo method that works
for optically thick translucent objects exhibiting subsurface scattering.
Our method is built upon the previous studies showing that subsur-
face scattering is approximated as convolution with a blurring kernel.
We extend this observation and show that the original surface normal
convolved with the scattering kernel corresponds to the blurred surface
normal that can be obtained by a conventional photometric stereo tech-
nique. Based on this observation, we cast the photometric stereo problem
for optically thick translucent objects as a deconvolution problem, and
develop a method to recover accurate surface normals. Experimental re-
sults of both synthetic and real-world scenes show the effectiveness of
the proposed method.

1 Introduction

Photometric stereo estimates the surface normals of a scene from multiple shad-
ing images taken under different lighting conditions [1]. While conventional meth-
ods are developed for simple Lambertian diffuse surfaces [2], recent generaliza-
tions can handle more complex reflections in real-world scenes [3,4]. However,
surface normal estimation of translucent materials is still a difficult task, where
subsurface scattering is significant [5].

In a translucent object, incident light travels randomly and exits from various
neighboring locations. This global light transport effect makes it hard to directly
associate the shading observations with its surface geometry. As a result, shape-
from-intensity techniques that only assume local illumination models naturally
suffer from the unmodeled error of subsurface scattering. One of the directions to
address this issue is to remove the subsurface scattering component from the ob-
servations, therefore conventional shape-from-intensity techniques can be used to
the remaining direct lighting component. Recently, Nayar et al. [6] have demon-
strated an approach to effectively remove subsurface scattering from the scene
observations, with an expense of additional measurements under high-frequency
illuminations. In general, removing the subsurface scattering component requires
an additional preprocessing stage, and a shape-from-intensity method that can
directly account for subsurface scattering is wanted.
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While exact modeling of subsurface scattering is still a difficult task that re-
quires complicated models, prior studies in the field of computer graphics show
that the image formation model of subsurface scattering can be well approxi-
mated as convolution of the scattering kernel and surface radiance on optically
thick materials, which distribute light regardless of the incident directions [7]. We
use this approximation to develop surface normal deconvolution, which recovers
original surface normal from the blurry surface normal obtained by conventional
photometric stereo on translucent objects. This idea is similar to Dong et al.’s
method [8], which estimates surface normal by deconvolved input images to
remove the subsurface scattering effect. While Dong et al. assume parametric
subsurface scattering, i.e., photon beam diffusion of optically homogeneous me-
dia, we represent subsurface scattering by non-parametric convolution kernels
for either optically homogeneous or inhomogeneous media. The convolution ker-
nels can be either calibrated or estimated, and various deconvolution techniques
in the literature (such as image deblurring methods) can be used for the imple-
mentation to recover deblurred surface normal. We show estimation results by
both our deconvolution formulation and existing deconvolution in experiments.

2 Related Works

Conventional photometric stereo methods recover surface normals at a pixel-level
detail based on local illumination models. While the original work of Wood-
ham [1] uses a simple Lambertian reflection model [2], more recent approaches
make various generalizations by explicitly accounting for more flexible reflectance
models [9,10], or by robust estimation framework [3,4]. These methods are
shown effective; however, for translucent objects, global light interactions need
to be accounted for to achieve accurate surface normal estimation. A seminal
work of Nayar et al. [11] explicitly takes interreflections into account, which
are global light transports among opaque surfaces. While the problem is sim-
ilar, subsurface scattering remains as an un-addressed light transport effect in
shape-from-intensity methods.

Recently, structured-light methods for measuring the shape of translucent
surfaces are proposed. To reduce effect of subsurface scattering, combination
of polarizers and phase shifting [12], multiplication of low-frequency and high-
frequency projection pattern [13], and high frequency illumination with multi-
plexed light source [14] have been used. In addition, Gupta et al. [15] use several
binary projection codes to decrease estimation errors caused by subsurface scat-
tering and interreflections. These techniques are shown effective, with an expense
of specialized hardware setups.

Modeling subsurface scattering has been more studied in computer graphics
as bidirectional scattering surface reflection distribution function (BSSRDF).
Although the general BSSRDF's can represent various translucent appearances, it
is difficult to exactly model BSSRDF's because of its high-dimensionality. Hence,
researchers previously approximate BSSRDF's as a low dimensional function with
an assumption of homogeneous media [16], or isotropic scattering based on the
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Fig. 1. Light interactions on a translucent surface. Incident light is partially reflected
off the surface, while the rest of the light transmits and spreads inside the subsurface.

diffusion theory [17-19]. In our work, we also approximate subsurface scattering
by a simple model with an assumption of optically thick materials. In optically
thick materials, incident light repeatedly scatters and loses its directionality,
and as a result, the scattering strength becomes invariant to the illumination
and observation directions. Based on this characteristics, subsurface scattering
is approximated by a convolutional model in [7]. Our method is built upon this
observation and extends it to develop a photometric stereo method for optically
thick translucent objects.

3 Convolutional Image Formation Model

We begin with the image formation model for a translucent surface. When light
illuminates a translucent surface, it is partially reflected, transmitted and also
absorbed as depicted in Fig. 1. A portion of the transmitted light comes back
to the surface via subsurface scattering; thus, the radiance I(x,1,v) at a scene
point x with incident vector 1 and observation vector v becomes the sum of the
reflection I,.(x,1,v) and subsurface scattering Is(x,1,v) components as

[(I,I,V) :IT(I,I,V)+IS(1‘,1,V). (1)
The subsurface scattering component Is(z,1, v) is modeled as [17]
Ii(z,1,v) =~(z) F(v,n(z),n) / R(z,y)F(1,n(y), n)n(y) " dy, (2)
yeEA

where v(x) is a scale factor for the subsurface scattering component, F' repre-
sents Fresnel transmission, and v,n,1 € R3 are the obervation, surface normal,
and incident vectors, respectively. 1 is a refractive index, R(x,y) represents an
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extinction term for light from scene point x to its neighbor y such as dipole
model [17], and A defines a neighboring area. Generally, the subsurface scatter-
ing component describes a nonlinear relation between the surface normals and
observed intensity due to the Fresnel transmission term. To relax this complexity,
we approximate the original model in a simpler form by assuming an optically
thick material, as in [7]. On the surface of an optically thick material, subsurface
scattering does not depend on the direction of the light, because the transmitted
light scatters uncountable times and loses its directionality as same as diffusion
approximation. Thus, subsurface scattering is invariant to the incident direction
and outgoing direction, and the Fresnel terms F' can be regarded as constants
on optically thick materials. As a result the subsurface scattering component
Is(x,1,v) is simplified to

I(z,1) = +'(z) / R(z,y)n(y) 1dy, (3)
yeA

where 7/(z) is a new scale factor of subsurface scattering that includes constant
Fresnel transmission terms.

Assuming a Lambertian reflectance model for the reflection component
I.(x,1) = p(x)n(x)T1with a diffuse albedo p(x), the intensity observation I(z, 1, v)
can be written as

T

(1) = | pla)n(@) +~'(x) / R(z.ym(y)dy | 1 (4)
yeA

The first factor of Eq. (4) can be regarded as a simple convolution model as

T

Ia,1) = / Wz y)n()dy | 1= (hsn(@)71, (5)
cA

where * is the convolution operation, the kernel h represents a scattering effect
for the surface normals as

h(z,y) = p(x)d(z — y) + 7' (z)R(x,y). (6)

A similar convolutional approximation of subsurface scattering is also dis-
cussed in the work of Munoz et al. [7] for the forward rendering of optically thick
materials. This method is also inspired by the works of convolutional approxi-
mated subsurface scattering by d’Eon et al. [18] for the rendering of human skin
and Donner et al. [16] for multi-layered materials. Unlike their method where
the extinction term R(zx,y) is defined as a function parameterized only by the
relative position of z and ¥, our method allows more flexibility for the extinction
term R(x,y) so that inhomogeneous translucent materials can also be handled.
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4 Solution method

Based on the convolutional image formation model, we develop a photometric
stereo method for estimating the surface normals of an optically thick translu-
cent surface. Our input is the same as traditional photometric stereo: A set of
images is taken under varying lighting directions from a fixed view point. To
simplify the discussion, we assume that the light directions are calibrated and
the observations do not include shadows. In the rest of the paper, we work in
the discretized pixel sites v and v that correspond to scene points x and v,
respectively; thus Eq. (5) becomes

I(u,1) = (h(u,v) *n(u)” L (7
The convolution equation Eq. (7) has a simple linear algebraic expression as
D = HNL, (8)

where D € R™*F is an observation matrix, m and k are the numbers of pixels
and light directions, respectively, H € R™*™ is a scattering matrix, N € R™*3
is a surface normal matrix, and L € R3*¥ is an incident light matrix, which is
assumed to be known. This linear expression indeed has a similarity to the Lam-
bertian photometric stereo [1], where the observation D, scaled surface normal
Ny, and light matrix L has the following relationship:

D = N,L. 9)

From Egs. (8) and (9), we can see that the scaled surface normal N corresponds
to HN as

N, = HN. (10)

Therefore, we could regard the scaled surface normal Ny as a blurry version of
the original surface normal N that we wish to estimate. In the following we call
N, a smoothed surface normal.

Based on this observation, we estimate the surface normal N by taking the
following two-step approach: (a) Obtain the smoothed surface normal N, by
Lambertian photometric stereo [1], (b) Estimate surface normal N in a decon-
volution framework using the subsurface scattering matrix H.

(a) Estimation of smoothed surface normal N,. We use a conventional Lamber-
tian photometric stereo [1] for deriving the smoothed surface normal Ny as

N, = DL, (11)

where T represents a Moore-Penrose pseudo inverse.
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(b) Estimation of original surface normal N. Once the smoothed surface normal
N, is obtained, we use Eq. (10) for deriving the original surface normal N. If
the scattering matrix H is available and invertible, we can directly obtain the
estimate of the original surface normal N in a linear least-squares fashion as
N = H !N,. Since the estimation result produced by such a simple deconvo-
lution is often degraded by ringing artifacts due to the loss of high-frequency
information in the original signal, we use a smoothness constraint to stabilize
the estimation. We design the smoothness term s as a weighted second-order
difference of n(u) among u’s neighborhood locations ¢ and v as

n”(u) = w(t,u) (n(t) - n(u)) - w(u,v) (n(u) - n(v)). (12)

The weight w(u,v) controls the discontinuity of surface normals by taking the
difference of intensity observations across varying lightings 1; as

k
w(u,v) = exp <_rz Z (I(u,l;) — I(v, li))2> ) (13)

i
The matrix expression of the smoothness N” is given as
N = WN, (14)

where W € R**™ is a matrix of the second-order derivative filter, a is the number
of triplets used for computing the second-order derivatives. In our case, we define
the triplets along horizontal and vertical directions in the image coordinates.
Finally, our estimation problem becomes a ridge regression problem as

N = argmin |[HN — N||2 + A||[WN]|%, (15)
N

where A controls smoothness of the estimates. An explicit solution to this prob-
lem is given by setting its first-order derivative to be zero as

N = (HTH v ,\WTW) THTN, (16)

In this manner, the estimates for the original surface normal N can be obtained
in a closed-form.

The mathematical expression of the problem is equivalent to the image de-
blurring problem, where the original sharp image is recovered via deconvolution.
The important difference is, however, that our problem deals with the deconvolu-
tion of surface normals. Therefore, conventional image priors that are developed
for natural images may not be suitable. Other than this aspect, existing decon-
volution techniques can be alternatively used for estimating the surface normal
N from the smoothed surface normal Ng. The convolution kernel H is generally
unknown but can be either calibrated (non-blind deconvolution) or estimated
(blind deconvolution). While most of image deblurring techniques are limited
to spatially-invariant point spread functions (PSFs), which corresponds to han-
dling optically homogeneous materials in our case, the formulation of Eq. (16)
can naturally handle optically inhomogeneous materials, corresponding to the
case of spatially-varying PSFs.
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Fig. 2. Setting for measuring the convolution kernel. Projector casts a thin light ray to
target object. We estimate the convolution kernel from the incident pattern and light
distributions on the target object. In the case of inhomogeneous media, we capture
light distributions at optically different regions.

4.1 Calibration of Convolution Kernel

As mentioned above, the surface normal deconvolution can be performed with-
out knowing the convolution kernel by using blind deconvolution techniques;
however, the knowledge of the convolution kernel is useful for stabilizing the
estimation. Here we describe a simple procedure for measuring the convolution
kernel. Fig. 2 shows our setting for measuring the convolution kernel. By illumi-
nating a diffuse surface and the target translucent material individually by a thin
ray emitted from a projector, we obtain the measurements of the incident light
distribution and scattering response on the surface, respectively. The measured
scattering response corresponds to the convolution between the incident light
distribution and the convolution kernel. From this relationship, we calibrate the
convolution kernel A. When target media is optically inhomogeneous, we need
to calibrate convolution kernels at each optically different region.

5 Experiments

Now we evaluate our method using both synthetic and real-world data for the
purposes of quantitative and qualitative evaluations.

5.1 Synthetic data

Homogeneous media For the synthetic data, we use two types of scenes, scene
A and B, as shown in Fig. 3. The image sizes of scene A and B are 150 x 113 and
160 x 160 pixels, respectively. For synthesizing the input images under varying
lightings, we use Eq. (1) with the subsurface scattering model of Eq. (2). For the
extinction term R(z,y) in Eq. (2), we use the Dipole model [17] with the same
parameters that are described in their paper. The camera model is orthographic
and a pixel area corresponds to (4/15)%[mm?] in the metric system.

Figure 3 (b) shows the result of Lambertian photometric stereo based on
Eq. (11) and its angular error in the pseudo color. Although the estimated sur-
face normals are smoothed out due to subsurface scattering, especially around
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edges, the low-frequency signal of the overall surface normal directions are largely
obtained.

To apply our surface normal deconvolution of Eq. (16), we use the extinction
term R(z,y) as the convolution kernel. The distance between scene points z
and y is approximated to the distance between pixel sites w and v in the image
coordinates. Figures 3 (c¢) and (d) show the result of our method with varying
smoothness factors, A = 0.01 and A = 0.1, respectively. While the results with
a small smoothness factor A = 0.01 yield sharper reconstructions, they suffer
from ringing artifacts around surface normal edges. Although the choice of the
proper value for )\ is scene-dependent and thus difficult as is the case with any
regularization techniques, with a proper value of A, our method significantly im-
proves the reconstruction accuracy over the Lambertian photometric stereo that
only considers the local illumination model, even though we also assume the
same Lambertian model as the reflectance component. Table 1 summarizes the
maximum and mean angular errors of the surface normal estimates using various
material parameters. In general, we have observed that the smaller magnitude of
subsurface scattering yields better accuracy, because stronger subsurface scat-
tering cuts off the high-frequency signals more significantly. It shows that, by
properly accounting for subsurface scattering, the accuracy improves by roughly
2 ~ 5 times in comparison with the baseline technique that only considers the
local illumination model.

For optically homogeneous materials, we can also use conventional decon-
volution methods in place of solving Eq. (16). Figures 4 and 5 show results
of conventional non-blind deconvolution and blind deconvolution for scene B,
respectively. For the non-blind deconvolution methods, we use the same con-
volution kernel with the one that is used for producing the result of Fig. 3.
The results show consistent improvement over Lambertian photometric stereo,
although these original methods are not particularly designed for deblurring
surface normal fields. In addition, the results of blind deconvolution methods
in Fig. 5, where the convolution kernel is not given but simultaneously estimated,
also show improvement. While the blind deconvolution is a harder problem than
non-blind deconvolution and the results are generally worse, when the knowledge
of the convolution kernel is unavailable, it is a viable option for our method.

Inhomogeneous media Our solution method is naturally applicable to the
case of inhomogeneous materials as long as the convolution kernel H in Eq. (16)
is defined. To evaluate the performance of our method for inhomogeneous ma-
terials, we produce synthetic images that contain different optical thicknesses
using masks that indicate the material regions as shown in Fig. 6 (a) and (b).
Due to the difference of the magnitudes of subsurface scattering in the mate-
rial regions, the surface normal estimates obtained by Lambertian photometric
stereo, shown in Fig. 6 (d) and (e), exhibit varying smoothnesses; smoother in
the gray mask region, and sharper in the white mask region.

By applying our method, the surface normal field is consistently improved
regardless of the material regions as shown in the figure. This recovery shows
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Fig. 3. Result of synthetic scenes A and B. (a) shows an example of synthetic images
using the Dipole model with the skim milk parameters in [17]. (b) is the surface normal
and error maps of the Lambertian photometric stereo. More faithful surface normals
are obtained with our method in (¢) and (d) with the varying smoothness factor A.

Table 1. Max and mean angular errors [deg.] of scene A and B with various materials.
Parameters of each materials are described in [17].

Plotof [|-—3 Scene A Scene B
kernels [\ 1 || ambertian | Our method | Our method || Lambertian | Our method | Our method
PS A1=10.01 A=0.1 PS A1=10.01 A=0.1
max | mean | max | mean| max | mean || max | mean| max | mean | max | mean
1. Marble 415 | 7.7 [40.1| 3.0 | 305 | 2.6 56.2 119|291 | 19 |36.2 | 5.6

2.Skimmilk || 56.4 | 11.7 | 656 | 7.2 | 488 | 6.8 || 61.3| 157|521 | 6.0 |98.4 |10.7
3. Whole milk || 37.7 | 6.6 | 30.7 | 25 | 254 | 1.9 || 524|107 | 221 | 15 | 285 | 44
4. Skinl 54.4 | 10.7 | 614 | 7.6 | 506 | 6.3 || 63.4] 153|431 | 6.5 [105.1]10.6
5. Skin2 50.3 | 98 595 | 51 | 441 | 47 || 615|143 |479| 42 862 | 87

higher accuracy than that of Fig. 3, because of the fact that this inhomogeneous
example contains a region where scattering is less significant.
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Fig. 4. Surface normal estimates of scene B using non-blind deconvolution methods
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Fig. 5. Surface normal estimates of scene B using blind deconvolution methods

5.2 Real-world data

We also tested our method using the real-world translucent objects. Figure 7 (a)
shows our experiment setting. We used a Nikon D90 camera with a linear radio-
metric response function (RAW mode) and with a telescopic lens to approximate
an orthographic projection. The target scenes are illuminated under directional
lightings, and the light directions are calibrated using a dark specular sphere.
In addition, to avoid specular reflections from the scene, we placed polarizers
in front of both the light source and camera. We used three target objects: a
soap as a homogeneous medium, angel and unicorn ornaments as inhomogeneous
media as shown in Fig. 7 (b). Each scene is recorded under 12 different lighting
directions. The image size of the soap, angel, and unicorn scenes are 232 x 164,
206 x 257, and 158 x 230 pixels, respectively. Prior to the measurement, the
convolution kernels are measured using the procedure described in Sec. 4.1. For
the inhomogeneous objects, we measured two distinct kernels which depend on
different material regions, one for the white region and the other for the pink
region. Examples of the recorded intensity images are shown in the left-most
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Fig. 6. Results with optically inhomogeneous media using scenes A and B. (a) and
(b) show the masks that indicate different material regions and one of the synthesized
images. We use two types of convolution kernels shown in (c¢) for these distinct regions.
(d) and (e) show the smoothed surface normals obtained by Lambertian photometric
stereo and our results, respectively.

column of Fig. 8. These images are not significantly blurry, but the details are
smoothed out due to subsurface scattering.

The top row of Fig. 8 shows the result for the soap scene. While the surface
normal recovered by Lambertian photometric stereo is significantly smoothed
out, our method produces a much sharper estimate. The middle and bottom
rows show the results of the angel and unicorn scenes, respectively. To assess
the reconstruction accuracy, we created replicas of those by making molds with
plaster. Assuming that the plaster reflectance is close to Lambertian, we ob-
tained the reference surface normal by applying Lambertian photometric stereo
to the replicas. The surface normal of plaster replicas exhibits details of the
original shape, while the result of Lambertian photometric stereo is smoother.
Our method makes the blurry surface normal much sharper and closer to the
reference surface normal.

5.3 Discussion

Computation time. Previous experiments show, in the case of optically homo-
geneous materials, we can apply various fast deconvolution methods for image
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Fig. 7. Experiment setting and target objects. We use a projector as a light source.
The camera is equipped with a telescopic lens. Polarizers are used to reduce the effects
of specular reflection on the target object.
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Fig. 8. Result of the real-world scenes. The soap scene in the top row is a homogeneous
medium, while the middle and bottom rows (angel and unicorn scenes) are made of
inhomogeneous media.
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deblurring to recover surface normal. However, in the case of inhomogeneous me-
dia, we have to solve Eq. (16) to deal with spatially variant convolution kernels.
Our matlab implementation on Intel Core i7 CPU (3.5 GHz) takes about 17.6,
39, and 3.5 seconds to recover surface of soap, angel, and unicorn scenes, respec-
tively. The density of non-zero elements of matrix FIF + AW W in Eq. (16)
is about 2.5%. The computation time depends on the size and the number of
non-zero elements of matrix FTF + AWT W, which are determined by the input
image size and apparent sizes of PSFs in the image coordinates.

Limitations. Our method has a couple of limitations. First, we have ignored
the influence of Fresnel transmissions, thus our method is restricted to optically
thick materials. As the material shows more directional scattering, the accuracy
of our method may gradually decrease. We are interested in exploring an it-
erative estimation framework to adaptively update the convolution kernels for
incorporating the Fresnel transmission effects. The second limitation is that our
method in practice relies on known convolution kernels, especially when dealing
with optically inhomogeneous materials. Although a sophisticated blind decon-
volution method may resolve this issue, but at this point, the knowledge of the
convolution kernel plays an important role in obtaining accurate surface normal
estimates. We are interested in investigating a good prior for surface normal
fields that may potentially improve the blind deconvolution.

6 Discussions and Summary

In this paper, we proposed a photometric stereo method for optically thick
translucent objects. We have extended the previous study on a convolutional
approximation of subsurface scattering and developed a surface normal deconvo-
lution technique, which consists of a conventional photometric stereo and image
deconvolution. Our experiment shows that the surface normals of translucent
objects are reliably estimated by our method. As depicted in the experiment
section, our method can benefit from a large body of image deblurring methods
in the literature including blind deconvolution methods. In addition, we have
shown that our method is able to handle optically inhomogeneous media.
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