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Abstract

Camera spectral sensitivity plays an important role for
various color-based computer vision tasks. Although sev-
eral methods have been proposed to estimate it, their ap-
plicability is severely restricted by the requirement for a
known illumination spectrum. In this work, we present a
single-image estimation method using fluorescence with no
requirement for a known illumination spectrum. Under d-
ifferent illuminations, the spectral distributions of fluores-
cence emitted from the same material remain unchanged up
to a certain scale. Thus, a camera’s response to the fluo-
rescence would have the same chromaticity. Making use of
this chromaticity invariance, the camera spectral sensitivi-
ty can be estimated under an arbitrary illumination whose
spectrum is unknown. Through extensive experiments, we
proved that our method is accurate under different illumi-
nations. Moreover, we show how to recover the spectra of
daylight from the estimated results. Finally, we use the esti-
mated camera spectral sensitivities and daylight spectra to
solve color correction problems.

1. Introduction

Light spans a wide range of wavelengths. With a digital
color camera, the scene radiance is recorded as RGB values
via color filters that specify light in different wavelength
ranges to be observed. Therefore, the recorded RGB values
are dependent on the spectral sensitivity of color filters (or
sensors), i.e., different sensors yield different RGB outputs
for the same scene. Camera spectral sensitivity plays an
important role for a lot of computer vision tasks that use
color information, such as spectral reflectance recovery [17,
10], color correction [16] and color constancy [8, 9]. That
means estimation of camera spectral sensitivity is necessary
to guarantee various color-based methods work well.

∗This work was done while Shuai Han was an intern at Microsoft Re-
search Asia.

A standard technique for estimating camera spectral sen-
sitivity is to take pictures of monochromatic light whose
bandwidth is narrow [2]. The spectral sensitivity of the
camera can be reliably estimated from recorded observa-
tions and known spectral distributions of monochromatic
light. Although it gives accurate estimates, the method re-
quires expensive hardware to generate and measure a se-
ries of monochromatic light, thus its use has been limited
to well-equipped laboratories only. In addition, the whole
procedure is laborious because of the need for multiple ob-
servations of different light.

To simplify the procedure, methods using calibration tar-
gets whose reflectance is known have been proposed [7, 21,
15]. These methods estimate the camera spectral sensitivi-
ty by recording a calibration target, e.g., IT8 Target, under
illumination with a known spectral distribution. These ap-
proaches reduce the effort needed for measurement. How-
ever, their requirement for a known illumination spectrum
limits their practicability due to the need for a spectrometer
or a specific light source with known illumination.

In this paper, we propose a new method for estimating
the camera spectral sensitivity from a single image captured
under an unknown illumination. The key idea is to use flu-
orescence: a physical phenomenon whereby the substance
emits specific wavelengths of light by absorbing radiation
of different wavelength. Its physical property of a fixed e-
mission spectrum is particularly useful for the camera spec-
tral sensitivity estimations because the spectral profile of the
fluorescence remains unchanged up to a certain scale under
arbitrary illumination. To make a single image estimate, we
use a chart of fluorescent materials whose emission spec-
tra are pre-determined. Then, from the emission spectra of
these fluorescent materials, we derive an analytic solution
for determining the camera spectral sensitivity.

There are three key properties about the proposed
method. First, it does not require the illumination spectrum
to be known. The estimate can be made under unknown
lighting conditions, e.g., outdoors under sunlight, under a
skylight, or indoors under a fluorescent lamp, without hav-



ing to measure any spectrum. Second, the estimation re-
quires only a single shot of a scene with the calibration
target. This reduces the cost of data acquisition. Third,
the fluorescent chart used in this work is made from fluo-
rescent paint, which is inexpensive and readily available at
stationery stores. These properties will make the camera
spectral sensitivity estimation more widely available.

2. Related Works

Camera spectral sensitivity can be estimated by estab-
lishing a relationship between incident narrow-band light
with different wavelengths across the visible wavelength
range and the camera’s outputs. To achieve this goal, the
standard technique uses a monochromator or narrow-band
filters to generate a series of monochromatic light. Each
monochromatic light is cast on a standard white board, and
the reflected light is observed by the target camera. At the
same time, the spectral distributions of the monochromatic
light are measured by a spectrometer. The camera spectral
sensitivity can then be calculated using the captured images
and measured spectra [2]. Because measurements are inde-
pendent of each other, this method is accurate. However,
it requires expensive optical equipments and a dark room.
Moreover, capturing dozens of images and spectral distri-
butions makes the whole procedure time-consuming.

To make measurement more practical, methods using
calibration targets are proposed. These calibration targets,
e.g., the IT8 target or Macbeth ColorChecker, contain sev-
eral patches whose spectral reflectance is known. Under il-
lumination with known spectrum, spectra of reflected light
from these patches can be computed. The camera spectral
sensitivity can also be estimated from the RGB values of
these patches in captured images [7, 4, 6, 21]. However,
these methods require controlled lighting conditions, which
means the light should be spatially uniform and its spectral
distribution is known. These requirements can be satisfied
only in laboratories. To extend the scope of these methods
out of the lab, Rump et al. [15] devised an imaging model
accounting for specularity and spatially varying illumina-
tion. By using this model, measurements can be conduct-
ed in an environment where specularity or shadows exist.
However, it still needs a known illumination spectrum.

To avoid the requirement for a known illumination spec-
trum, we make use of fluorescence. Fluorescence has been
receiving more and more attention recently. In [13, 12],
methods describing how to model and render fluorescent
materials are presented. Modified color constancy methods
to deal with fluorescent surfaces are shown in [3]. In [11],
fluorescence is used to sample the geometry of transparent
objects that cannot be sampled with traditional methods. In
this work, we explore the spectral properties of fluorescence
and use them to estimate the camera spectral sensitivity.

3. Fluorescence
Fluorescence is a common phenomenon that has been

used for a variety of purposes, such as in lamps, stationery,
safety vests, etc. Fluorescence is the emission of light by
a substance that has absorbed light of different (generally
shorter) wavelengths. In this absorption and re-emission
process, two terms about fluorescence are involved, i.e., ab-
sorption (or excitation) spectrum and emission spectrum.
The absorption spectrum represents how strongly the flu-
orescent material absorbs fluorescence-exciting light as a
function of its wavelength. The emission spectrum de-
scribes the spectral profile of fluorescence emitted from the
fluorescent material. Both of the absorption spectrum and
emission spectrum are determined by the properties of the
fluorescent material itself.

The emitted fluorescence from the p-th fluorescent ma-
terial, fp(λ) (p = 1, 2, 3, ..., P ), is described as

fp(λ) =

(∫
ap(λ

′)l(λ′)dλ′
)
ep(λ), (1)

where λ′ and λ are the wavelengths of the incoming light
and the outgoing fluorescence, ap(λ′) and ep(λ) are the ab-
sorption and emission spectra of the p-th fluorescent mate-
rial, l(λ′) is the spectral distribution of the incoming light.

We can see that the integral part in Eq. (1) is determined
by the absorption spectrum and the spectrum of the incom-
ing light. Therefore, it is independent from the spectrum of
the outgoing fluorescence. Replacing that part by a scale
factor kp, we can rewrite Eq. (1) as

fp(λ) = kpep(λ). (2)

Eq. (2) means that the emitted fluorescence from a certain
fluorescent material under different illuminations remains
unchanged up to a certain scale.

To verify this unique property of fluorescence, we mea-
sured the fluorescence emitted from a patch smeared with
fluorescent paint under different monochromatic light. The
measured spectral distributions are shown in Fig. 1. As ex-
pected from Eq. (2), all these distributions are different only
in scales.

When the emitted fluorescence from the p-th fluorescent
material is observed with an RGB camera, the relationship
between the pixel intensity (Rf

p , G
f
p , B

f
p )

T and the emitted
fluorescence is represented by1

Rf
p =

∫
fp(λ)cR(λ)dλ. (3)

Here, cR(λ) (cG(λ) and cB(λ)) is the spectral sensitivity
of the red (green and blue) channel. Gf

p and Bf
p can be

1We assume the camera has a linear intensity response function. With-
out loss of generality, geometric factors is omitted here.
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Figure 1. Spectral distributions of emitted fluorescence from the
same material under different monochromatic light remain un-
changed up to a certain scale.

represented in a similar manner. For the sake of simplicity,
we hereafter derive equations for red channel and omit those
for green and blue channels if they are trivial.

Substituting Eq. (2) into Eq. (3), we obtain

Rf
p = kp

∫
ep(λ)cR(λ)dλ. (4)

Note that the scale factor kp is the same for all three chan-
nels. Thus, the chromaticity (rfp , g

f
p , b

f
p)

T of the emitted
fluorescence is described as

rfp =
Rf

p

Rf
p +Gf

p +Bf
p

=

∫
ep(λ)cR(λ)dλ∫

ep(λ)(cR(λ) + cG(λ) + cB(λ))dλ
. (5)

The other two components gfp and bfp can be described in a
similar manner. Clearly, the scale factor kp is eliminated.
As a result, the chromaticity of the emitted fluorescence is
invariant with respect to the spectrum of the incoming light.

Using the chromaticity invariance of emitted fluores-
cence is the key idea of our method. It enables us to es-
timate the spectral sensitivity of a camera without having to
know the illumination spectrum.

4. Separating Fluorescent and Reflective Com-
ponents

As discussed in Sec. 3, the chromaticity of emitted flu-
orescence is invariant with respect to changes in illumi-
nation. Unfortunately, however, fluorescent materials of-
ten not only emit fluorescence but also reflect inciden-
t light. Thus, the observed pixel intensity of the p-th fluores-
cent material, (Rp, Gp, Bp)

T , contains a fluorescent com-
ponent (Rf

p , G
f
p , B

f
p )

T as well as a reflective component
(Rr

p, G
r
p, B

r
p)

T :
Rp = Rf

p +Rr
p. (6)

Therefore, we need to separate these two components in or-
der to make use of the chromaticity invariance of the fluo-
rescent component.

Recently, Zhang and Sato [23] proposed a method for
separating fluorescent and reflective components by using
independent component analysis, but their method requires
at least two images captured under different illumination-
s. In this section, we show how to separate the fluorescent
and reflective components from a single image. The key
idea is to use non-fluorescent materials with known spectral
reflectance as a reference (Fig. 2).

We first estimate the reflective components of fluores-
cent materials under an unknown illumination. It can be
described as

Rr
p =

∫
sp(λ)cR(λ)l(λ)dλ, (7)

where sp(λ) is the spectral reflectance of the p-th fluores-
cent material. Gr

p and Br
p can be described in a similar

manner. According to a previous study [18], the spectral
reflectance of various materials can be approximately rep-
resented by a linear combination of a small number of basis
functions. Thus, we have

sp(λ) =

N∑
n=1

αp,nb
r
n(λ), (8)

where brn(λ) (n = 1, 2, 3, ..., N ) are the basis functions for
spectral reflectance that are available in [18], αp,n are the
corresponding coefficients. Substituting Eq. (8) into Eq. (7),
we obtain

Rr
p =

N∑
n=1

αp,n

∫
brn(λ)cR(λ)l(λ)dλ. (9)

To compute Rr
p, we just need to know αp,n and∫

brn(λ)cR(λ)l(λ)dλ. Because our objective is to design
a calibration target, corresponding sp(λ) can be measured
once in advance. Then, coefficients can be computed
as αp,n =

∫
sp(λ)b

r
n(λ)dλ since the basis functions are

known and orthogonal to each other. Hence, the remain-
ing problem is how to get

∫
brn(λ)cR(λ)l(λ)dλ. To solve

this problem, a reference containing a number of non-
fluorescent materials with known spectral reflectance is
used.

As shown in Fig. 2, we put the reference as well as the
fluorescent chart together. Under the same illumination,
the observed pixel intensity of the q-th reference material,
(Rq, Gq, Bq)

T (q = 1, 2, 3, ..., Q), is represented by

Rq =

N∑
n=1

αq,n

∫
brn(λ)cR(λ)l(λ)dλ. (10)

Here, αq,n are known and
∫
brn(λ)cR(λ)l(λ)dλ are un-

known. For all materials on the reference, we obtain a set of
linear equations that are similar to Eq. (10). The number of
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Figure 2. Under spatial uniformly distributed illumination, a refer-
ence containing a number of non-fluorescent patches with known
spectral reflectance is used to help separating the fluorescent com-
ponent from the reflective component of the captured images of
the fluorescent chart.

equations isQ (reference materials) × 3 (channels), and the
number of unknowns is N (basis functions) × 3 (channels).
When Q ≥ N , the unknown integral

∫
brn(λ)cR(λ)l(λ)dλ

can be estimated. Because we set N = 8 according to the
previous study [18], the reference chart should contain at
least eight materials whose spectral reflectance is linearly
independent.

Once we obtain the value of the integral in Eq. (10), the
reflective components of the fluorescent materials can be
calculated by Eq. (9). Finally, the fluorescent components
(Rf

p , G
f
p , B

f
p )

T are computed by subtracting the calculated
reflective components from the observed pixel intensities as

Rf
p = Rp −Rr

p. (11)

5. Estimating Camera Spectral Sensitivity
In the previous sections, we described that the chro-

maticity of fluorescence is invariant under different illumi-
nations and that the fluorescent components can be extract-
ed by using non-fluorescent materials as a reference even
under an unknown illumination. In this section, we show
how to use the illumination-invariant chromaticity of the
fluorescent components for estimating the camera spectral
sensitivity.

Although different cameras have different spectral sen-
sitivities, their spectral sensitivities should not deviate a lot
from each other. Thus, it becomes possible to use a limited
number of parameters or basis functions to express camera
spectral sensitivity [7, 20]. To estimate spectral sensitivity,
we just need to estimate the parameters or corresponding
coefficients. To guarantee the general applicability of our
method, we adopt Fourier basis functions2. Accordingly,
the spectral sensitivity (cR, cG, cB)

T can be decomposed

2Assuming the range of spectral sensitivity is [λl, λu], the first few
Fourier basis functions are bc1(λ) = 1, bc2(λ) = sin[2π(λ − λl)/(λu −
λl)], bc3(λ) = cos[2π(λ − λl)/(λu − λl)], and etc. We could also use
eigenvectors computed from a set of camera spectral sensitivities as basis
functions if such data are available.

into a sum of sines and cosines as

cR(λ) =

M∑
m=1

βR,mb
c
m(λ), (12)

where bcm(λ) are the m-th Fourier bases for representing
the camera spectral sensitivity. βR,m are the corresponding
coefficients for the red channel. The spectral sensitivities of
the green and blue channels, cG and cB , can be decomposed
in a similar manner.

Substituting Eq. (12) into Eq. (5), we obtain

rfp =

∑
m βR,m

∫
ep(λ)b

c
m(λ)dλ∑

m(βR,m + βG,m + βB,m)
∫
ep(λ)bcm(λ)dλ

.

(13)
Denoting the integral

∫
ep(λ)b

c
m(λ)dλ by tp,m, we can

rewrite Eq. (13) as

[
(rfp − 1)tp rfp tp rfp tp

] βR

βG

βB

 = 0, (14)

where tp = (tp,1, . . . , tp,M ) is a 1 ×M row vector, βR =
(βR,1, . . . , βR,M )T is a M × 1 column vector, βG and βB

are defined in a similar manner. Similar equations can be
obtained for the green and blue channels. Since there are P
fluorescent materials, we have P (fluorescent materials) ×
3 (channels) equations in total:

(rf1 − 1)t1 rf1 t1 rf1 t1
gf1 t1 (gf1 − 1)t1 gf1 t1
bf1t1 bf1t1 (bf1 − 1)t1

...
...

...
(rfP − 1)tP rfP tP rfP tP
gfP tP (gfP − 1)tP gfP tP
bfP tP bfP tP (bfP − 1)tP



βR

βG

βB

 = 0.

(15)
Eq. (15) can be expressed in the form ofAX = 0, whereA
is a 3P × 3M matrix andX is a 3M × 1 vector. A nonzero
solution of this linear equation is found as the eigenvector
of the square matrix ATA corresponding to the smallest
eigenvalue.

In experiments, we found that the estimated coefficients
(βR,βG,βB , )

T are sometimes sensitive to noise. There-
fore, to make the computation more stable, we incorporate a
smoothness constraint on spectral sensitivity. Here, the sec-
ond derivative of spectral sensitivity with respect to wave-
length is used. As a result, we obtain

A
wRφ 0 0
0 wGφ 0
0 0 wBφ

X = 0, (16)
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Figure 3. Left: fluorescent chart used in this work. Right: spectral
distributions of fluorescence emitted from its 16 patches.

where (wR, wG, wB)
T is the weight of the smoothness ter-

m and φ = (d2bc1(λ)/dλ
2, . . . , d2bcM (λ)/dλ2). Substitut-

ing the solution of Eq. (16) into Eq. (12), camera spectral
sensitivity can be obtained up to a scale.

The steps for camera spectral sensitivity is summarized
as (1) take a picture of the fluorescent chart and the refer-
ence; (2) separate the fluorescent and the reflective com-
ponents of the fluorescent chart in the captured image; (3)
compute the chromaticity of the fluorescent component; (4)
estimate the camera spectral sensitivity as described in this
section; (5) normalize the estimated camera spectral sensi-
tivity, by which the largest absolute value of the estimated
results in RGB channels is set to one.

6. Experiments

In this section, we show experimental results to evaluate
our method for estimating camera spectral sensitivity and
two applications, namely, daylight spectrum estimation and
color correction.

A chart containing 16 patches, shown in Fig. 3, was used
in our experiments. Those patches were made by smear-
ing 16 different types of fluorescent paint (P = 16) on a
black board. To measure the emission spectra of these fluo-
rescent patches, they were lit by 320nm UV light generated
by a monochromator (SHIMADZUTM SPG-120) one by
one, and the spectral distributions of light from these patch-
es were measured by a spectrometer (PhotoResearchTM

PR-670). Because no light in the visible wavelength range
was emitted from the monochromator, the measured results
(Fig. 3) are the spectral distributions of fluorescence fp(λ).

As stated in Sec. 4, a non-fluorescent reference is used
for separating fluorescent and reflective components. In
our experiments, we used a Macbeth ColorChecker with 24
patches whose spectral reflectance is publicly available [1].
For the spectral reflectance of fluorescent patches, we use
the method proposed in [5]. To each fluorescent patch, we
build its bispectral radiance factor matrix (Donaldson ma-
trix). Spectral reflectance of the fluorescent patch can be
represented by the diagonal elements of the matrix.

6.1. Result of spectral sensitivity estimation

We estimated the spectral sensitivities of three different
cameras by taking pictures under four common illumina-
tions, sun, blue sky, cloudy sky, and fluorescent-lamp. The
spectral distributions of these illuminations were unknown.
Based on the previous study [7], 9 Fourier basis functions
are used for representing camera spectral sensitivity. The
weight of the smoothness term is set to (8, 8, 3). The Esti-
mated results using our method are shown as continuous
curves in Fig. 4. The Results by using monochromatic
lights are shown as dotted curves. To evaluate the differ-
ence between them, for each estimated result, we computed
the average value of the root mean square errors (RMSE)
of RGB 3 channels. The numbers are also shown in Fig. 4.
These results show the accuracy of our method even without
knowing the illumination spectra.

Observing the estimated results of our method, we can
see that the results under sunlight have a little bigger errors
than those under the other illuminations. The reason behind
this is the fact that fluorescent materials absorb light with
higher energy than their emitted fluorescence. As shown
in Fig. 5, to light from the blue sky or the cloudy sky, it-
s intensity in the shorter wavelength range (higher energy)
is stronger than that in the longer wavelength range (lower
energy). On the contrary, sunlight is stronger in the longer
wavelength range. Hence, the fluorescent component of the
fluorescent chart under the sunlight is darker than those un-
der the other illuminations. This results in that the estimated
results under sunlight by our method are more easily affect-
ed by noise and errors. Therefore, when using our method,
illuminations which are strong in high energy wavelength
range, e.g., skylight, are recommended.

Another observation about the estimated camera spectral
sensitivities is that results of the blue channel show larg-
er deviations when compared with those of the green or red
channel. Our explanation is that fluorescent materials which
emit blue fluorescence require stronger UV light and absorb
less visible light, thus their fluorescent components always
appears darker than the other patches under common illu-
minations. Our estimate for the blue channel are thus more
easily affected by noise or errors than the other two chan-
nels.

6.2. Daylight spectrum estimation

Daylight includes all direct and indirect sunlight during
the daytime. The spectrum of daylight is important for deal-
ing with various imaging problems, such as color correction
and color constancy in outdoor environments. In this sub-
section we show how to estimate the spectrum of daylight
by the camera spectral sensitivity.

According to the previous studies [14, 22, 19], daylight
spectrum can be well approximated with a small number of
basis functions. To reconstruct daylight, we need to esti-
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Figure 4. Estimated spectral sensitivities of cameras under different illuminations whose spectra are unknown. Results of our method are
similar to those using monochromatic light, but ours have less high frequency because of the use of Fourier bases and the smooth constraint.
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Figure 5. The spectral distributions of daylight can be accurately estimated from the estimated camera spectral sensitivity of a Canon 5D
and the appearance of the Macbeth ColorChecker in the captured images. Note that each spectrum is normalized to ensure the area of the
region below the corresponding curve is a constant. Thus, the intensities are relative values for the two distributions in the same figure.

mate its corresponding coefficients. Here, we adopt a wide-
ly used three-basis model [22]:

l(λ) =

3∑
j=1

γjb
l
j(λ), (17)

where blj(λ) is the j-th basis for daylight that is available
in [22], and γj is the corresponding coefficient. Recal-
l that we used the Macbeth ColorChecker as the reference
for separating the fluorescent component in Sec. 4, the ap-
pearance of its q-th patch under daylight, (Rq, Gq, Bq)

T

(q = 1, ..., 24), can be represented as

Rq =

∫
sq(λ)cR(λ)l(λ)dλ. (18)

Substituting Eq. (17) into Eq. (18), we obtain

Rq =

3∑
j=1

γj

∫
sq(λ)cR(λ)b

l
j(λ)dλ. (19)

Three factors in the integral of Eq. (19) are known, and on-
ly γj are unknown. For all 24 patches on the ColorChecker,
we have 24(patch number)× 3 (channels), i.e., 72, linear e-
quations that are similar to Eq. (19). The three unknown co-
efficients γj can be calculated in terms of the least-squares
error. With the calculated results, the spectrum of daylight
can be estimated by Eq. (17).

The estimates for different daylight conditions are shown
in Fig. 5. The estimated spectra are indicated by red curves,
and ground truths measured by the spectrometer are indicat-
ed by black curves. We can see that they are very similar to



Figure 6. A synthetic image of a postcard composed from three
real captured images. Cameras and illuminations are shown in
parentheses.

Figure 7. The calibration targets are placed in the scene.

each other. The root mean square errors (RMSE) of the es-
timated results are very small. Through these comparisons,
we can see that the spectra of daylight can be accurately
estimated by the camera spectral sensitivity.

Based on the above discussion, it is apparent that we are
capable of estimating not only camera spectral sensitivity
but also the daylight spectrum from a single captured image.

6.3. Color correction

It is well known that the appearance of the same scene
varies a lot under different illuminations or using differen-
t cameras. One example is shown in Fig. 6. This differ-
ence can be seen as multiplying albedo of scene points with
different scales in the RGB channels. The scales can be
calculated by multiplying the obtained camera spectral sen-
sitivities and daylight spectra in the spectral domain, i.e.,∫
cR(λ)l(λ)dλ. By making use of these scales, the color of

captured images under different illuminations or by differ-
ent cameras can be corrected.

Let us suppose that the spectral sensitivity of a camer-
a is (cR(λ), cG(λ), cB(λ))

T , daylight is l(λ), and the ob-
served intensity of a scene point is (R,G,B)T . For a d-
ifferent camera (cR(λ), cG(λ), cB(λ))

T or under different
daylight l(λ), the observed intensity of the same scene point
is (R,G,B)T . The relationship between these two observa-
tions can be described as

R =

∫
cR(λ)l(λ)dλ∫
cR(λ)l(λ)dλ

R, (20)

for the red channel.The relationship for the blue and green
channels can be described in a similar manner.

As discussed in previous sections, appearance of the flu-
orescent chart and the Macbeth ColorChecker is required

Figure 9. Difference between two Macbeth ColorChecker images
captured under sunlight and blue sky conditions by the Canon 5D.
Left: Macbeth ColorChecker. Middle: difference (×5) before cor-
rection. Right: difference (×5) after correction.

for estimating camera spectral sensitivity and daylight spec-
trum. If they can be placed in the scene, a single image can
capture their appearance as well as the scene (as shown in
Fig. 7). Otherwise, two images need to be taken, i.e., one of
the calibration targets, and another one of the scene.

Once the corresponding camera spectral sensitives and
the daylight spectra are obtained, the color of a scene’s ap-
pearance can be corrected using Eq. (20). Here, we took
images about 2 scenes under different daylights with dif-
ferent cameras, a building and a postcard. These images
are framed in blue in Fig. 8. With the estimated camer-
a spectral sensitivities and daylight spectra, we calculated
the scenes’ appearances under different daylight conditions
with different cameras by Eq. (20). The calculated results
are framed in red. Each column shows a real captured im-
age and a color corrected image. We can see that, although
the corrected results are not identical to the real captured
images, the difference is significantly decreased, by which
the effectiveness of our method can be demonstrated.

To evaluate how well our method works on different col-
ors, we captured two Macbeth ColorChecker images using
a Canon 5D under the sun and blue sky conditions. The d-
ifferences between these images before and after correction
are shown in Fig. 9. The darker the patches are, the smaller
the differences are. From the middle image, we can see that
because sunlight is more reddish than light from the blue
sky, for patches which have high reflectivity to red light,
their differences in the red channel are obvious before col-
or correction. After color correction, as shown in the right
image, those obvious differences are greatly reduced.

7. Conclusions
In this work, we proposed an estimation method for cam-

era spectral sensitivity under unknown illumination. Mak-
ing use of chromaticity invariance of fluorescence, our
method is capable of estimating camera spectral sensitiv-
ity from a single image of a calibration chart made with
fluorescent paint and a Macbeth ColorChecker taken under
unknown illumination. The effectiveness of the proposed
method was successfully demonstrated with experiments
using real images taken under various illumination condi-
tions. In addition, two applications of our method were in-



(EPL1s,Cloudy Sky) (5D, Sun) (EX-F1,Sun) (EPL1s,Blue Sky)

Figure 8. The color in the captured images can be corrected to match other images captured under different illuminations or by different
cameras with estimated camera spectral sensitivities and daylight spectra. Here, we show two scenes, buildings (left) and a postcard (right).
Cameras and illuminations are shown in parentheses.

troduced: daylight spectrum estimation and color correction
for outdoor images. In the future, we are planning to work
on how to select a set of fluorescent paint to achieve bet-
ter estimation accuracy under a wide range of illumination
conditions.
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