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Abstract

Radiometrically calibrating the images from Internet
photo collections brings photometric analysis from lab data
to big image data in the wild, but conventional calibra-
tion methods cannot be directly applied to such image data.
This paper presents a method to jointly perform radiometric
calibration for a set of images in an Internet photo collec-
tion. By incorporating the consistency of scene reflectance
for corresponding pixels in multiple images, the proposed
method estimates radiometric response functions of all the
images using a rank minimization framework. Our calibra-
tion aligns all response functions in an image set up to the
same exponential ambiguity in a robust manner. Quanti-
tative results using both synthetic and real data show the
effectiveness of the proposed method.

1. Introduction

For a popular landmark, millions of pictures are captured

and shared through the Internet. Such Internet images and

community photo collections provide comprehensive image

resources to computer vision research, because they con-

tain images captured from different viewpoints, at different

time, under different illumination, and using different types

of cameras and settings. The cameras capturing these im-

ages naturally organize a “network”. By exploring such a

network, geometric analyses such as geometric camera cal-

ibration and 3D reconstruction, which are generally infea-

sible using a single image, become tractable by establish-

ing correspondences for recovering 3D points using multi-

view observations. Recent progress on structure from mo-

tion (SfM) [32] and multi-view stereo (MVS) [9, 10] show

successful applications using Internet photos.

Photometric analysis is an important complement prob-

lem for analyzing images from Internet photo collections

organized by such a camera network, and radiometric cali-

bration is a key prerequisite for photometric analysis. Many
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computer vision problems, when they are to be applied to

Internet photos, e.g., intrinsic image decomposition [18]

and photometric stereo [29], require input images to be ra-

diometrically linearized. However, a commercial camera

usually maps the scene radiance to its pixel values in a

nonlinear manner for compressing the dynamic range and

aesthetic purpose. Such a mapping is unknown in most

cases and treated as business secrets by camera manufac-

tures. The goal of radiometric calibration is to estimate the

camera’s (inverse) radiometric response function so that the

observed pixel values linearly relate the scene radiance.

Classic radiometric calibration approaches capture a

static scene under various exposure times [25]. For out-

door scene with illumination changes, given an image se-

quence from a fixed viewpoint, the problem could also be

solved by physically modeling the image formation and us-

ing the consistent scene albedo across images as the key

constraint [15]. Radiometrically calibrating Internet photos

shares a similar spirit to [15], but it is much more challeng-

ing due to that 1) the scenes are captured from multiple di-

verse viewpoints, 2) each image is captured by an unknown

camera with unknown settings (e.g., white balance and ex-

posure time), and 3) a batch of different response functions

need to be estimated simultaneously.

In this paper, we propose a new method to jointly per-

form radiometric calibration to all cameras using a collec-

tion of Internet photos for the same scene. We utilize the

geometric information calculated from SfM and MVS, and

assume the scene reflectance (albedo) is the same for corre-

sponding pixels in all images. Our key observation is that

the ratio of albedo values for pixels in the same image with

the same surface normal should be equal across the image

set, only when each image is applied with a correctly cal-

ibrated inverse radiometric response function. Such a ra-

tio operation cancels the influence of different white bal-

ance settings, exposure times, and environment illumination

conditions which are usually arbitrary for each image (and

camera). The albedo ratios are stacked as a matrix whose

rank should be 1. We minimize the rank of such a matrix

to achieve robust estimation that aligns all response func-
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tions up to a global exponential ambiguity. Figure 1 illus-

trates key ideas and the pipeline of our method. The perfor-

mance of our approach is evaluated using various synthetic

and real-world datasets in a quantitative manner.

2. Related Work

Our work is related to conventional radiometric calibra-

tion methods and computer vision applications to Internet

photo collections.

Radiometric calibration. A Gretag Macbeth twenty-four

patch color checker, whose reflectance value for each patch

is known, is a commonly used tool for radiometric cali-

bration [2]. Single image calibration without calibration

chart is possible by assuming linear radiance distribution

at edges [21, 22]. Using multiple images with different ex-

posure times is a popular and practical approach for radio-

metric calibration. Classic methods include Debevec and

Malik’s approach fitting a non-parametric, smooth response

function [6], and Mitsunaga and Nayar’s method adopting

a polynomial model [25]. The problem in [25] can be for-

mulated as a rank minimization one to achieve superior ro-

bustness [19]. The response functions can also be repre-

sented using a more realistic model by using the database

of measured response functions (DoRF) [11]. Such a rep-

resentation can also be used in log-space to deal with mov-

ing cameras [16], varying illumination conditions [15], and

dynamic scenes in the wild [1]. In addition to multiple

exposure constraint, other constraints such as the statisti-

cal model of CCD imaging [33], geometry-invariant prop-

erty [26], symmetric distribution of noise [24], temporal

mixture of motion blur [34], and multiple directional light-

ing [30], are proposed for different imaging setups and ap-

plications. Note in all these approaches only one camera

is calibrated using one image or multiple images, and the

camera is controlled to adjust its settings (e.g., manual mode

with fixed white balance, ISO, but varying exposure times)

for calibration purpose.

There are existing works that perform radiometric cali-

bration for Internet photos. Kuthirummal et al. [17] explore

priors on large image collections. By assuming the same

camera model has a consistent response function and some

radiometrically calibrated images of that camera model are

available, a camera-specific response function could be es-

timated for the image collection according to the deviation

from statistical priors. Due to the improvement of 3D re-

construction techniques on Internet-scale image sets, radio-

metric calibration becomes feasible by using the scene ge-

ometry estimated from SfM [32] and MVS [9, 10]. Diaz

and Sturm [7, 8] jointly solve for the albedos, response

functions, and illuminations by using nonlinear optimiza-

tion and priors from DoRF. A more recent work by Li and

Peers [20] assume a local smoothness of image patch ap-

pearances and a 1D linear relationship over corresponding

image patches, so that the radiometric calibration for multi-

view images under varying illumination could be recast as

the classic multiple exposure one [16], which could poten-

tially be applied to Internet photos.

Computer vision meets Internet photos. Various com-

puter vision problems could be extended to deal with

Internet photos. Successful applications include scene

completion [12], virtual tourism [31], weather estima-

tion [28], composing pictures from sketches [3], image

restoration [5], generating face animations [14], image col-

orization [4], intrinsic image decomposition [18], color con-

sistency [27], photometric stereo [29], synthesizing time-

lapse video [23], and so on and so forth. In many of these

applications, the arbitrary nonlinear response functions for

all cameras are simply approximated as a global Gamma

correction, or even completely ignored as a linear one. So

we believe a radiometric calibration solution for Internet

photos is a very important technique that could potentially

benefit miscellaneous application scenarios relying on pho-

tometric analysis.

3. Image Formation Model
We assume the scene reflectance follows the Lambertian

model, and we know the scene geometry (surface normal)

from SfM and MVS. The correspondence between 3D scene

points and 2D pixels in all images are also obtained from 3D

reconstruction. We take the j-th image in the image collec-

tion as an example, in which the scene is illuminated under

the j-th natural lighting Lj(ω). Then the scene radiance of

the i-th 3D point is determined by the interaction of lighting

with its surface normal ni ∈ R
3×1 scaled by Lambertian

albedo ρi as

Rij =

∫
Ω

υij(ω)ρiLj(ω)max((n�
i ω), 0)dω, (1)

where ω ∈ R
3×1 is a unit vector of spherical directions Ω,

and Lj(ω) is the environment map for the j-th image which

encodes the light intensity from the direction ω. υij(ω) is

the visibility function which is set to 0 if the illumination

from direction ω is not visible for the i-th 3D point pro-

jected to the j-th image or 1 otherwise. For any ni with vis-

ibility function being equal to 1, it receives the light from its

visible hemisphere Ωi, and the integration over the visible

hemisphere is simplified as

Rij = ρi(n
�
i l̄j), (2)

where l̄j =
∫
Ωi

Lj(ω)dω.

When a scene is captured by the j-th camera, the image

irradiance for the i-th pixel in the k-th color channel (e.g.,
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Figure 1. Pipeline of our method. We estimate the (inverse) radiometric response functions for each image {g1, g2, · · · , gQ} by rank

minimization over the stacks of pixel pairs. The “ ◦ ” operator applies each inverse response function g to both the numerator and

denominator of ratio terms in the same row. The correct g transforms each row of the matrix to the same vector (up to a scale) to make the

matrix rank-1.

RGB) can be represented as

Ikij = ckj tjρ
k
i (n

�
i l̄j), (3)

where ckj is a white balance scale and tj is an exposure time

for the j-th camera. Due to a nonlinear mapping of the cam-

era radiometric response function f(·), the observations are

distorted by f as

Bk
ij = fk

j (I
k
ij) = fk

j (c
k
j tjρ

k
i (n

�
i l̄j)). (4)

The response function is a monotonic function, so there ex-

ists a unique inverse function g = f−1 to map the obser-

vation values to image irradiance values. By applying the

inverse response function g to both sides of Eq. (4), we ob-

tain

gkj (B
k
ij) = ckj tjρ

k
i (n

�
i l̄j). (5)

Radiometric calibration could be performed for three differ-

ent color channels independently, so we drop the k-related

terms thereafter. Denote qj = cjtj as an image-dependent

scaling factor, then Eq. (5) is simplified as

gj(Bij) = qjρi(n
�
i l̄j). (6)

In the context of radiometric calibration for Internet photos,

each image in the photo collection has its own g. Our goal

is to simultaneously estimate g for all the images in a photo

collection.

4. Radiometric Calibration Method
4.1. Formulation

With the scene 3D information available, it is possible

to find points with the same surface normal, receiving the

same amount of light, but with different albedos in each im-

age. We assume such pixels are identified for now, and the

pixel selection method will be introduced in Sec. 4.4. Let

a pair of such 3D points have normal n and lighting l̄, and

their albedo values be ρm and ρn (ρm �= ρn) respectively.

Substituting these two points into Eq. (6) and taking the ra-

tio between them, we obtain

gj(Bmj)

gj(Bnj)
=

qjρm(n� l̄)
qjρn(n� l̄)

=
ρm
ρn

. (7)

The albedo ratio consistency above is the key constraint

we employ for radiometric calibration. Given a sufficient

number of observation values B that cover a broad intensity

range, we can build a system of equations solved by nonlin-

ear optimization [25]. Recent progress in radiometric cali-

bration shows that the rank minimization could solve such

a problem in a more robust manner and effectively avoid

overfitting [19]. Therefore, we formulate our problem in a

matrix form, whose minimum rank corresponds to the cor-

rect estimates of inverse response functions.

Denote P as the total number of pixel pairs with the

same normal (and lighting) but different albedos, and Q as

the total number of images, or equivalently pairs of lighting

conditions and cameras. We could arrange these pixels ac-

cording to the ratio format of Eq. (7) and stack them as the

following matrix:

AQ×P =

⎛
⎜⎜⎜⎜⎜⎝

g1(B11)
g1(B01)

g1(B21)
g1(B11)

· · · g1(BP1)
g1(B(P−1)1)

g2(B12)
g2(B02)

g2(B22)
g2(B12)

· · · g2(BP2)
g2(B(P−1)2)

...
...

. . .
...

gQ(B1Q)
gQ(B0Q)

gQ(B2Q)
gQ(B1Q) · · · gQ(BPQ)

gQ(B(P−1)Q)

⎞
⎟⎟⎟⎟⎟⎠

. (8)

The optimal inverse response function gj for each row

transforms each pixel ratio in the matrix to its corre-

sponding albedo ratio, so that each row of A becomes



(
ρ1

ρ0
, ρ2

ρ1
, · · · , ρP

ρ(P−1)

)
1, which obviously makes A a rank-1

matrix. Thus, our radiometric calibration problem becomes

the following rank minimization one:

{g∗1 , g∗2 , · · · , g∗Q} = argmin
{g1,g2,··· ,gQ}

rank(A). (9)

The above operation and process is illustrated in Fig. 1.

4.2. Optimization

We solve the above rank minimization using a similar

approach as in [19], which is represented by the condition

number as

{g∗1 , g∗2 , · · · , g∗Q} = argmin
{g1,g2,··· ,gQ}

σ2(A)

σ1(A)
, (10)

where σi(A) is the i-th singular value of A.

We choose to use the polynomial representation for g as

suggested by [19]. The main consideration is that polyno-

mial representation is more appropriate for gradient-based

convex optimization because of its smoothness. Both irra-

diance and observation values are normalized in the range

of 0 to 1. Then the polynomial representation of g becomes

g(B) = B +B(B − 1)
S−1∑
i=1

piB
S−i−1, (11)

where {p1, p2, · · · , pS−1} are the polynomial coefficients

to be estimated. Such an expression uses only S − 1 un-

knowns to represent an S-order polynomial. The end point

constraints for inverse response functions are explicitly en-

forced, since Eq. (11) satisfies g(0) = 0 and g(1) = 1.

Note that we only borrow the optimization strategy

from [19] to solve Eq. (10). In fact, our problem is much

more challenging than [19] due to the joint estimation of

many different response functions, and the structure of the

matrix whose rank needs to be minimized is completely dif-

ferent due to pixel ratios. We find such a problem cannot

be directly solved like [19] as directly solving for all g si-

multaneously is quite unstable, because each gj transforms

one row of A independently and this significantly increases

the search space for minimum rank. So we solve this issue

by using a pairwise optimization followed by a global
refinement.

The pairwise optimization means we select two rows as

“base” image pair and align all the other rows to the base

in an incremental manner. The base image pair is selected

as the two rows of A with the minimum difference after

applying the estimated inverse response functions, through

1For easy representation, we only show one option for arranging the

pixel pairs (there could be ratio terms like ρ2
ρ0

,
ρP
ρ1

, etc.). Given p + 1

different ρ values, there are C2
P+1 possible combinations of taking the

ratio.

Algorithm 1 Radiometric calibration algorithm
INPUT: Input images, with pixels selected and stacked

as the matrix of Eq. (8).

// Pairwise optimization:
for all pairwise combinations using two rows of A do

Solve two g using Eq. (10);

Apply these two g to the corresponding rows in A;

end for
Select g0m and g0n that make corresponding rows of A
have the minimum difference;

for k = {1, 2, · · · , Q} ∧ k �= {m,n} do
Build a matrix with the {m,n, k}-th rows of A and

solve g0k using Eq. (10), with g0m and g0n fixed;

end for
// Global refinement:
Solve Eq. (10) for all g simultaneously using

{g01 , g02 , · · · , g0Q} as initial values;

OUTPUT: Inverse response functions {g∗1 , g∗2 , · · · , g∗Q}.

solving Eq. (10) for all C2
Q submatrices composed by two

rows of A. Then we add one row at a time to solve for

the remaining Q− 2 rows for submatrices with three rows.

The estimated inverse response functions here are denoted

as g0. The global refinement takes g0 as initial values to

solve for all g simultaneously using Eq. (10). Our complete

algorithm is summarized as Algorithm 1.

4.3. Exponential ambiguity

Similar to existing radiometric calibration methods [1,

11, 15, 16, 19, 25], our method also suffers from the expo-

nential ambiguity. This is because for a set of optimized so-

lution g, gγ for any unknown γ also keeps the ratio consis-

tent in Eq. (7) and makes A rank-1. Note there only exists

one γ for all images. The uncertainty of γ brings challenges

to joint estimation of all g and this is part of the reason that

we have to start from a pairwise optimization approach in

Algorithm 1. Although infinite many solutions exist for one

set of images without additional constraint, our method nat-

urally unifies all response functions to the same ambiguity

and such results could be useful for tasks such as high dy-

namic range imaging and panorama image stitching.

We could remove such a one-parameter ambiguity by in-

serting only one radiometrically calibrated image into the

photo collection. Without losing generality, we put pixel

pairs from this image in the first row and fix g∗1 as a linear

function during the optimization. Then the optimized re-

sults for {g∗2 , g∗3 , · · · , g∗Q} automatically align all the other

rows of A with the linearized values to form a set of solu-

tion free of exponential ambiguity.



4.4. Implementation details

3D reconstruction. To build the matrix in Eq. (8), we

need to extract corresponding pixels in all images that have

the same surface normal, under the same lighting condition,

but with different albedos. We first perform 3D reconstruc-

tion (SfM [32] and MVS [10]) using the input photo col-

lection. The 3D points with the same surface normal are

selected and projected onto 2D images. We then calculate

pairwise ratio for these pixels as initial guess of albedo ra-

tios. The selected pixels in each pair should receive the

same amount of environment illumination, if their visibility

function υij defined in Eq. (1) were the same. However,

the visibility information cannot be accurately estimated

through sparse 3D reconstruction and unknown environ-

ment illumination, which results in noise in real data such

as cast shadow and local illumination variations. Therefore,

we propose a simple outlier rejection approach to deal with

this issue. We find that the majority of such initially se-

lected pixel pairs show similar ratio values, and any noisy

pixels appearing in either numerator or denominator cause

the ratio significantly different from others. Such outliers

could be easily identified and discarded by a line fitting us-

ing RANSAC. Finally, remaining pixel pairs observed in all

images are stacked as the matrix in Eq. (8) for optimization.

Details of optimization. In practice, we only require

dozens of images as input for the 3D reconstruction by SfM

and MVS. According to Algorithm 1, it is not necessary to

optimize Q response functions simultaneously, since we use

an incremental approach to estimate all response functions

except for the two that are selected as base. Given a com-

plete set of images, we divide it into several subgroups (e.g.,

10 images in each subgroup), and solve for each subgroup

using Algorithm 1. We empirically find such divide-and-

conquer strategy gives a more stable solution, and this prop-

erty allows the parallel processing of large amount data.

We use the Matlab build-in function “lsqnonlin” to

solve our nonlinear optimization. The initial guess for in-

verse response functions are chosen as a linear function for

all images in the pairwise optimization step. A monotonic-

ity constraint is added to penalize non-monotonic estimates

similarly as adopted in [19]. We further add a second-order

derivative constraint by assuming most response functions

have either concave or convex shapes. There are response

functions with more irregular shapes according to [11], but

they are rarely observed in common digital cameras.

Degenerate case. One obvious degenerate case for our

problem is a scene with uniform albedo. Because the uni-

form albedo causes ρm = ρn in Eq. (7), and every element

in A becomes one and thus A becomes rank-1. Therefore,

we need at least two different albedo values in the scene.

However, if pixels with two different albedos are all on the

same plane (assuming there is no shadow in the scene, so

that the same surface normal receives the same amount of

environment lighting), it falls into a similar degenerate case.

Therefore, the minimum requirement to avoid the degener-

ate case is a pair of different albedos on two different planes.

This is because even if the albedo ratio is the same after op-

timization, if two pixel pairs are scaled by different shad-

ing terms n�l and then nonlinearly mapped by the same

response function, their ratios become different before opti-

mization. Fortunately, a wild scene may contain much more

variations in either albedo or normal than our minimum re-

quirement. Since the problem formulation is highly non-

linear, it is non-trivial to provide analytical proof for the

number of different albedo or surface normal required, but

we will experimentally analyze such an issue in the next

section.

5. Experimental Results
We perform quantitative evaluation of our method us-

ing both synthetic and real data. The error metric used for

evaluation is the rooted mean square errors (RMSE) of the

estimated inverse response function w.r.t. the ground truth

and the disparity, i.e., the maximum absolute difference be-

tween the estimated and the ground truth curves.

5.1. Experiment with synthetic data

Number of pixel pairs vs. order of polynomial. Our

method is expected to be more stable and accurate given

more diverse values of pixel pairs (albedo and normal vari-

ations) and fitted with higher order polynomials. We use

synthetic data to verify the accuracy under different num-

ber of albedo values and polynomial orders by testing 6
types of pixel pairs and 6 different polynomial orders. The 6
groups of input data are generated by changing the number

of different albedo values multiplied by different normals as

{1×2, 2×3, 3×4, 4×6, 5×10, 6×15}. Here, 1×2 means

one pair of different albedo values on two different planes.

We then apply 10 different lighting conditions and 10 dif-

ferent response functions from the DoRF database [11] to

generate our observation values. The inverse response func-

tions are estimated using our methods, and the RMSE and

disparity are summarized in Fig. 2.

As expected, the average errors show a row-wise de-

creasing tendency due to more diverse input data variations.

It is interesting to note that only 24 pairs of points from each

image (four pairs of albedo values on six different planes)

produce reasonably small error (RMSE around 0.01) for a

joint estimation of 10 different response functions. From

Fig. 2, we can also see our method is not sensitive to the

choice of polynomial order and in general a polynomial or-

der larger than 5 works well. We fix the polynomial order

to 7 in all experiments as a tradeoff between accuracy and
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Figure 2. The average RMSE/disparity w.r.t. number of pixel pairs

(row-wise) and order of polynomials (column-wise). “Red” means

larger and “blue” means smaller errors.

complexity.

Performance with various noise. We first add quantiza-

tion to mimic the 8-bit image formation, and then we add

Poisson noise as suggested in [13, 19], which describes the

imaging noise in a more realistic manner by considering

signal-dependent shot and dark current noise. The noise

level is controlled by the camera gain parameter Cg , and

larger Cg means more severe noise. Please refer to Equa-

tions (9)-(11) in [19] for the noise model representation. We

perform 20 trials and each test contains 10 randomly se-

lected response functions from DoRF with 4×6 pixel pairs.

We evaluate another photometric image formation based

method [8] (denoted as “Diaz13”) implemented by our-

selves using the same data. We find a joint estimation to

all variables (albedos, lighting and response function co-

efficients) produces unreliable results, due to the nonlin-

ear optimization over too many variables. Therefore, we

provide the ground truth lighting coefficients in our im-

plementation of Diaz13 and use this as the stable perfor-

mance of Diaz13 for comparison. The results under var-

ious Cg = {0, 0.1, 0.2, 0.5} (where Cg = 0 means only

quantization noise) for both methods are plotted in Fig. 3.

Our method outperforms Diaz13 for most noise levels, but

Diaz13 shows more stable but less accurate performance

under these noise levels. When the noise is large, our

method shows degraded performance partially due to that

ratio operation magnifies the noise. Note that in real case,

Diaz13 requires the dense reconstruction for lighting esti-

mation, while we can only work on a few selected pixel

pairs.

Results on single-view images. Single-view synthetic

test is performed to provide an intuitive example with quan-

Noise level (Cg):
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Figure 3. Evaluation under various noise levels and comparison

between our method and Diaz13 [8]. The box-and-whisker plot

shows the mean (indicated as “×”), median, the first and third

quartile, and the minimum and maximum values for RMSE and

disparity for 200 (20× 10) estimated response functions.

Figure 4. Radiometric calibration results using a synthetic dataset.

The upper row shows the ground truth reflectance, shading images,

and the ten selected pixel pairs (yellow numbers) with the same

normal but different albedo values. Two example results of the es-

timated inverse response functions and the ground truth curves are

plotted, with the RMSE and disparity values shown in the legend.

The nonlinear observations (“With RF”), linearized images (“With

IRF”) and their absolute difference maps w.r.t. the “Original” im-

ages are shown next to the inverse response curve plots.

titative analysis, which is free of errors from 3D reconstruc-

tion. We use the data from [18], which is generated using a
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Figure 5. Estimated inverse radiometric response functions using an image collection mixed with Internet photos and captured images (in

red box). The results compared with “Diaz13” [8] and “Lin04” [21] on RGB channels of three images and calibrated ground truth are

shown. The RMSE and Disparity are in the legend of each plot.

physics-based renderer. Given the ground truth reflectance

and shading images, as show in the upper part of Fig. 4, we

manually select 10 pairs of pixels with the same surface nor-

mal but different albedo values (labeled using yellow num-

bers on the reflectance and shading images). We randomly

apply 10 different response functions to produce 10 obser-

vation images, and then use the selected pixels as input to

perform radiometric calibration. Two typical results of the

estimated inverse radiometric response functions w.r.t. the

ground truth curves are shown in Fig. 4. We further apply

the inverse response functions to the observation images,

and the close appearances between the linearized images

and the original images show the correctness of our radio-

metric calibration method.

5.2. Real data experiment
To perform quantitative evaluation using real data, we

create datasets containing mixture of Internet photos and

images captured using controlled cameras for three different

scenes. The total numbers of images are 55 for the dataset

used in Fig. 5, and 44, 31 respectively for the other two

datasets used in Fig. 6. We use three controlled cameras

(� Sony Alpha7, � Nikon D800, and � Canon EOS M2)

for all datasets, and calibrate their response functions us-

ing multiple exposure approach [19]. We perform 3D re-

construction and radiometric calibration for all images in

each dataset. Two (out of three) captured images are used

as the base image pair for pairwise optimization, and the

calibrated response functions are used to remove the expo-

nential ambiguity for all estimates from our method. We

also run our own implementation of “Diaz13” [8]2 and [21]

(denoted as “Lin04”)3 on the same dataset for comparison.

The quantitative results (estimated inverse radiometric

response functions and their RMSE/Disparity w.r.t. the

ground truth) on RGB channels of three images (captured

by three different camera models) from the first scene are

plotted in Fig. 5, and we show similar plots only using the

R channel of the other two scenes in Fig. 6. Except for the

2This time the lighting coefficients are also part of the optimization

which are initialized randomly.
3Implemented by Jean-Franois Lalonde and available from: https:

//github.com/jflalonde/radiometricCalibration
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Figure 6. Estimated inverse radiometric response functions using another two image collections mixed with Internet photos and captured

images (in red box). The results compared with “Diaz13” [8] and “Lin04” [21] on R channel of three images and calibrated ground truth

are shown. The RMSE and Disparity are in the legend of each plot.

second example in the bottom row of Fig. 6 where “Lin04”

[21] shows better result than ours, all our estimates show

the closest shape (with minimum RMSE/Disparity) to the

calibrated ground truth. The high accuracy of our method is

partly due to that we use calibrated ground truth to resolve

the exponential ambiguity, but the experiment here proves

that our method is able to jointly estimate the inverse re-

sponse functions for a set of images up to the same expo-

nential ambiguity reliably.

6. Discussions
We present a method to perform radiometric calibration

for images from Internet photo collections. Compared to

the conventional radiometric calibration problem, the Inter-

net photos have a wide range of unknown camera settings

and response functions, which are neither accessible nor ad-

justable. We solve this challenging problem by using the

scene albedo ratio, which is assumed to be consistent in all

images. We develop an optimization method based on rank

minimization for jointly estimating multiple response func-

tions. The effectiveness of the proposed method is demon-

strated using both synthetic and real-world data.

Currently, we need to assume the 3D reconstruction

is sufficiently reliable for extracting points that share the

same surface normal. With radiometric calibration problem

solved, it will be interesting to combine with photometric

3D reconstruction using Internet photos [29] to further im-

prove the quality of 3D reconstruction. Although our so-

lution is naturally invariant to white balance and exposure-

time settings of individual images, we can only recover the

scene radiance up to a linearly scaled value (for each color

channel) through the radiometric calibration. Explicitly in-

ferring the white balance and exposure-time settings of In-

ternet photos is an interesting future topic. Current method

cannot handle images with severe noise, and an even more

robust solution that compensates the noise magnification is-

sue caused by ratio operation is desired.
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