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Abstract

This paper presents a material classification method us-
ing an off-the-shelf Time-of-Flight (ToF) camera. We use a
key observation that the depth measurement by a ToF cam-
era is distorted in objects with certain materials, especially
with translucent materials. We show that this distortion is
caused by the variations of time domain impulse responses
across materials and also by the measurement mechanism
of the existing ToF cameras. Specifically, we reveal that the
amount of distortion varies according to the modulation fre-
quency of the ToF camera, the material of the object, and
the distance between the camera and object. Our method
uses the depth distortion of ToF measurements as features
and achieves material classification of a scene. Effective-
ness of the proposed method is demonstrated by numerical
evaluation and real-world experiments, showing its capa-
bility of even classifying visually similar objects.

1. Introduction

Material classification plays an important role for com-
puter vision applications, such as semantic segmentation
and object recognition. One of the major challenges in ma-
terial classification is that different materials may yield very
similar appearance. For example, artificial plastic fruits
and real fruits confronting a camera produce visually sim-
ilar RGB images that are difficult to distinguish. One of
the possible strategies to distinguish similar appearance is
to use the optical responses of the target object such as
spatial, angular, and temporal spread of the incident light.
Because different materials may have different optical re-
sponses due to their own subsurface scattering and diffuse
reflection properties, it is expected that a more reliable ma-
terial classification can be achieved using such optical cues
on top of the RGB observations.

Recently, Heide et al. [13] have developed a method that
recovers transient images from observations by a low-cost
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Figure 1: Depth distortion of a ToF camera. (a) A mayon-
naise bottle is measured by a Kinect. (b) Measured depth in
a 3D view. There is a gap in depth between the mayonnaise
and label regions. We use this depth distortion for material
classification. (c) Material segmentation result. The ma-
terial label is assigned for each pixel. (d) Application of
material classification to depth correction. Depths are cor-
rected based on the segmentation result and the distortion
database. Depth gaps among materials are corrected and a
faithful 3D shape is recovered.

Time-of-Flight (ToF) camera, which is originally designed
for depth measurement. There are other related studies
that use ToF cameras for recovering ultra-fast light prop-
agation, e.g., impulse response, of the scene [20, 32, 33]
with some hardware modifications and computation. Moti-
vated by these previous approaches that exploit the temporal
spread of light, we aim to classify materials using an indi-
rect temporal cue from an off-the-shelf ToF camera without
explicitly recovering impulse response.
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We develop a material classification method based on a
key observation that the measured depth of a translucent
object becomes greater than the actual depth as shown in
Fig. 1(b), where the depth gap between the mayonnaise and
paper label regions is obvious. We show that this depth dis-
tortion is caused by the time delay due to subsurface scat-
tering and varies along with both the modulation frequency
of ToF camera and the distance between the target and the
camera. Using the depth distortions as a feature of the ma-
terial, we propose an exemplar-based material classification
method.

The chief contributions of this paper are twofold. First,
we demonstrate that the material classification is tractable
by an off-the-shelf ToF camera, e.g., Xbox One Kinect.
Our method uses the distorted depth measurements as an
indirect temporal cue for material classification without ex-
plicitly recovering impulse responses; therefore it does not
require any modifications of hardware unlike [13, 20]. Sec-
ond, we show how ToF measurements are distorted inside
materials and along with depths. By moving the target ob-
ject along the depth direction, rich information about the
target can be obtained and it serves as important clue for
realizing material classification.

2. Related Work
Non-invasive and non-contact material classification is

an important research topic in computer vision and yet re-
mains a challenging task. There are several prior works
for material estimation. The methods based on the visual
appearance, e.g., color, shape, and/or textures of the mate-
rial [3, 44, 28, 37, 38], typically only require a single RGB
image; thus, the setups are easy to realize. The main prob-
lem is that this approach suffers from similar appearances
of different materials, e.g., texture-less boards, resulting in
a lower accuracy due to the lack of information.

The class of approaches based on the optical properties,
such as BRDF [49, 27], shading [29], and spectrum [36],
has a capability of distinguishing visually similar objects
in higher accuracy because the optical properties convey
richer information about the material. However, construct-
ing such measurement systems and building database of
samples generally require carefully controlled settings. This
class includes approaches based on other physical prop-
erties, e.g., elasticity [4], and water permeation and heat-
ing/cooling process [35]. Our method falls into this class
because we use a temporal response of the incident light,
which implicitly measures the optical and physical proper-
ties of target objects. Unlike these approaches, our method
uses an off-the-shelf ToF camera and needs only single ob-
servation at least, hence the cost of constructing the system
is as low as the appearance-based methods.

In the context of material classification using a ToF cam-
era, Su et al.’s method [41] is closely related. They propose

a method that classifies a material from raw ToF measure-
ments by sweeping over several modulation frequencies and
phases. While the approach is shown effective, it requires
special customization of a ToF camera for obtaining the
measurements. In contrast, our method only uses an off-the-
shelf ToF camera. We show that the material classification
can be achieved by such a simple setup by exploiting the
depth-dependency of the measurements. In addition, while
Su et al.’s method requires calibration for building a corre-
lation matrix and post-processing of the data after measure-
ment, our method does not require either of them.

For the comprehensible overview of temporal light trans-
port, we refer the reader to the recent survey by Jarabo et
al. [17]. A time domain impulse response of the scene, as
known as light-in-flight and transient imaging, can be ob-
tained using an interferometer [8], holography [1, 22], and
femtosecond-pulsed laser [46, 24, 45]. The time domain im-
pulse response can be also recovered using the ToF camera,
where the cost and temporal resolution drastically decrease.
Because the ToF camera is a device for measuring sub-nano
second phenomena, it can be used for visualizing the light
propagation of the scene by frequency sweep [13, 26, 33]
and optical coding [20, 32], while it requires customization
of a ToF camera. These measurement methods may be able
to be applied to the task of material classification [47], al-
though they require careful and expensive setups. On the
other hand, our method bypasses the exact recovery of the
time domain impulse response and simply uses the mea-
sured depth of a ToF camera.

When a ToF camera measures a multi-path scene, the
measured depth is distorted due to inter-reflections and
subsurface scattering, known as the multi-path interfer-
ence. Mitigating the multi-path interference and recover-
ing the correct depth is of broad interest, and it has been
studied by assuming two-bounce and simplified reflection
model [7, 5, 9, 18], parametric model [15, 23], K-sparity
and optimization [2, 6, 34], stereo ToF cameras [25], using
external projector [30], and frequency sweep [19]. Instead
of recovering the correct depth, we use a distorted depth as
a cue for the material classification. We show that, once the
material classification has been achieved, the classification
result can be used for correcting depths.

There are other scene analysis methods using ToF cam-
eras, e.g., recovering the shape of transparent and translu-
cent objects [39, 43], and measuring a slice of BRDF [31].
In addition, computational imaging methods using a ToF
camera, such as imaging around the corner [14, 21], separat-
ing direct and indirect light transport [47, 32, 11], imaging
the velocity of the object [12, 40], and imaging at a specific
depth [42] are proposed. Our method can also be consid-
ered one of the scene analysis methods as it aims at material
classification of the scene.



3. Time-of-Flight Observation
To begin with, we briefly review the measurements

that are obtained by a ToF camera. A correlation-based
ToF camera illuminates a scene by an amplitude modu-
lated wave fω(t) and measures its attenuated amplitude and
phase delay. From the phase delay and the speed of light,
the depth of the scene can be obtained.

In general, a scene can have the “multi-path” effect due
to inter-reflections and subsurface scattering, which degrade
the depth estimation accuracy. Image formation models
regarding the multi-path effect have been well understood
thanks to the previous works [13, 20, 11]; hence, we briefly
explain one of the models that we are going to use in this
paper. Following a phasor representation [11], amplitude
and phase of the returned wave can be represented by a sin-
gle complex value c ∈ C, called phasor, governed by the
modulation frequency ω. The measured amplitude ãω ∈ R
and depth d̃ω ∈ R of the ToF camera are obtained as{

d̃ω = c
4πω arg c(ω),

ãω = |c(ω)| ,
(1)

where the arg operator returns the angle of a complex pha-
sor, and c is the speed of light.

When the illumination wave is a sine wave, i.e., fω(t) =
sin(2πωt), the observed phasor can be represented as

c(ω) =

∫ ∞
0

r(t− τ)e−2πiωtdt, (2)

where τ(> 0) is the time of flight toward the surface of
the object, r(t) is the impulse response, or a point spread
function (PSF), of the object along with the time t, and i is
the imaginary unit. The impulse response is the summation
of all possible paths ρ ∈ P; therefore, r(t) can be written
as

r(t) =

∫
P
rρδ(|ρ| − t)dρ, (3)

where rρ is the contribution of the path ρ, |ρ| is the time
travelled along the path ρ, δ(t) is the Dirac delta function,
and t = 0 indicates the time when the impulse light hits
the surface of the object. Figure 2(b) illustrates a phasor
representation of the multi-path ToF observation. The time
domain PSF r(t− τ) is expanded onto the imaginary plane,
and the phasor depicted by a red arrow is the integration of
expanded PSF over the angle. Because the negative domain
of r(t) is zero, Eq. (2) expresses that ToF camera measures
the Fourier coefficients of the impulse response at the fre-
quency of the light modulation.

Frequency dependent depth distortion The principle of
the ToF camera assumes that the impulse response forms

t
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Figure 2: Phasor representation of ToF observations. (a) Si-
nusoidal illumination, (b) Time domain PSF is expanded to
the imaginary plane (orange). (c) When the object is placed
at different depths, the observation gets rotated but phase
distortion remains the same as (b). (d) Biased periodic il-
lumination. This toy example adds 20% harmonics to the
sinusoid for biasing. (e) The unit ball of the phasor repre-
sentation is distorted due to the biased illumination. (f) The
object is placed at the same depth as (c). The distortion of
the phase becomes different than (e) and (c).

Dirac delta function as r(t) = αδ(t), where α is the ampli-
tude decay of modulated light. In this case, the measured
depth d̃ω becomes

d̃ω =
c

4πω
arg

∫ ∞
0

αδ(t− τ)e−2πiωtdt︸ ︷︷ ︸
=2πωτ

=
cτ

2
= d, (4)

where d = cτ
2 is the ground truth depth of the object. Equa-

tion (4) represents that the accurate depth can be obtained
regardless of modulation frequency ω, if the impulse re-
sponse of the scene is exactly the Dirac delta.

In reality, almost all materials except for the perfect mir-
ror surface yield various shapes of impulse responses due
to diffuse and subsurface scattering [47]. When the target
object exhibits a temporally broad shape of the impulse re-



sponse, band-pass characteristic in the frequency domain
becomes unique to the object. Accordingly, ToF observa-
tion c(ω) can take an arbitrary value, because c(ω) is a
Fourier coefficient of the impulse response r(t) at the fre-
quency ω. In such a case, arg c(ω) does not necessarily
represent the correct phase 2πωτ , and as a result, the mea-
sured depth d̃ω is distorted, and the distortion varies with the
modulation frequency ω. This frequency-dependent depth
distortion is one of our key observations, and our method
exploits this property for the goal of material classification.

The shift in the time domain corresponds to the shift of
phase in the Fourier domain:

F [r(t− τ)] = e−2πiωτF [r(t)]

= e−2πiωτ r̂(ω),

where F [·] is the Fourier transform and r̂(ω) is the Fourier
transform of the function r(t). Measured depth d̃ω can then
be represented as

d̃ω =
c

4πω
arg
(
e−2πiωτ r̂ (ω)

)
= d+

c

4πω
arg r̂(ω).

(5)

The second term c
4πω arg r̂(ω) is the depth distortion at fre-

quency ω. In Fig. 2(b), the depth distortion is illustrated as
a blue arrow.

While a single observation of depth distortion can be the
same among different materials by chance, multiple obser-
vations using varying modulation frequencies can be used
for enriching the measurement. Such multiple observations
can be obtained with negligible latency because the ToF
measurement is much faster than the ordinary video frame
intervals [33].

However in practice, it is not straightforward to mea-
sure distortions using many different frequencies by an off-
the-shelf ToF camera. For example, Kinect has only three
modulation frequencies, and the frequencies cannot be eas-
ily changed; hence, only three distortion measurements are
practically available, which may be too few for developing
a reliable material classification system. To increase the in-
formation about the material in an alternative and easy way,
our method employs a strategy of changing the distance be-
tween the camera and object. Now, we discuss the depth-
dependency of the depth distortion.

Depth-dependent depth distortion When the target ob-
ject is placed at a different depth d+ ∆d, r(t− τ) is shifted
by ∆τ = 2∆d

c in the time domain. As a result, the measured
depth d̃′ω becomes

d̃′ω =
c

4πω
arg
(
e−2πiω(τ+∆τ)r̂ (ω)

)
= d+ ∆d+

c

4πω
arg r̂(ω).

(6)

The measured depth is just shifted by ∆d, and the depth
distortion c

4πω arg r̂(ω) remains the same as the one at the
original position as in Eq. (5). Figure 2(c) illustrates the
depth distortion at a different depth in a phasor representa-
tion. The blue arrow, which represents the depth distortion,
is the same as that of the original position as illustrated in
Fig. 2(b).

So far, we have assumed that the illumination is a perfect
sinusoidal wave. In practice, because a high-frequency si-
nusoidal wave is difficult to generate, today’s ToF cameras
emit non-sinusoidal periodic waves that contain high-order
harmonics [48, 10]. When the illumination wave has har-
monics components as shown in Fig. 2(d), the ToF obser-
vation exhibits depth-dependency as illustrated in Figs. 2(e)
and 2(f). Let us suppose that the distorted sinusoidal wave
is biased as fω(t) = bω(2πωt) sin(2πωt), where bω(2πωt)
is a periodic bias of the illumination wave due to harmonics.
The observed phasor is then written as

c(ω) =

∫ ∞
0

r(t− τ)bω(2πωt)e−2πiωtdt. (7)

The above indicates that the observation c(ω) is the Fourier
coefficient of r(t−τ)bω(2πωt), where the impulse response
r(t) is distorted by the bias bω(2πωt). Obviously, the bi-
ased impulse response r(t− τ)bω(2πωt) varies along with
τ , i.e., the observation varies along with the depth.

Usually, this depth-dependent variation is unwanted;
therefore, previous works attempted to eliminate it. For ex-
ample, Su et al. [41] remove the depth-dependent variation
using a correlation matrix. In contrast, we use the depth-
dependent distortion as an important cue for material clas-
sification as it contains rich information about the target’s
response.

4. Material Classification
Our method uses either or both of the frequency- and

depth-dependent depth distortions of ToF observations for
the purpose of material classification. For describing how
to use the depth distortions for material classification, we
begin with the case where the actual depth is known and
later describe a more general case where such an assump-
tion is eliminated.

When the target object is placed at a known depth loca-
tion, the depth distortion with respect to the actual depth is
directly measurable. Let us suppose that the target object is
measured by n(≥ 1) modulation frequencies and m(≥ 1)
positions. The absolute depth distortion vωi,dj can be ob-
tained by

vωi,dj = dj − d̃ωi,j , (8)

where d̃ωi,j is the measured depth at the i-th modulation
frequency ωi (i ∈ {1, · · · , n}) and the j-th position (j ∈



{1, · · · ,m}), and dj is the actual depth at the j-th position.
By aligning these distortions, a mn-length vector v can be
formed as a feature vector of the object as

v =
[
vω1,d1 · · · vωn,dm

]T
. (9)

Because the actual depth of the target object is not gen-
erally accessible, we develop a feature that does not require
the knowledge of the actual depth. Although we cannot di-
rectly obtain the depth distortion in this case, the relative
depth distortions among multiple frequencies and/or multi-
ple depths can be alternatively used. When multiple modu-
lation frequencies are available, i.e., n ≥ 2 case, the relative
depth distortion v′ωi,dj

can be computed by regarding the
measurement of one of the modulation frequencies, say the
n-th modulation frequency, as the reference measurement.
The relative depth distortions can be obtained by taking dif-
ferences from the reference measurement as

v′ωi,dj = vωi,dj − vωn,dj = d̃ωn,j − d̃ωi,j , (10)

where i ranges from 1 to n − 1. We can then setup an
m(n − 1)-length vector v by aligning the relative depth
distortions, and it can be used as a feature vector for ma-
terial classification. Although the reference measurement
d̃ωn,j may be distorted depending on the material, the fea-
ture vector v encapsulating the relative distortions conveys
discriminative cues for classifying materials.

In a similar manner, for the case where a single modu-
lation frequency and multiple depth locations is available,
i.e., n = 1 and m ≥ 2, the relative depth distortions
among depth locations v′′ω1,dj

can be obtained by regarding
the measurement of them-th depth position as the reference
measurement as

v′′ω1,dj = vω1,dj − vω1,dm = d̃ω1,m − d̃ω1,j + ∆dj , (11)

where ∆dj is the amount of movement from the base posi-
tion, which should be measured.

4.1. Classifier

We assume that we have a database of materials that con-
sists of the feature vectors measured using predefined mod-
ulation frequencies and depth locations in a certain range
beforehand. For classification, the target object is measured
with the full or partial set of the predefined modulation fre-
quencies and depth locations. Once we obtain the feature
vector of the target object as a query, we use the material
database as exemplar to look up the closest material.

While any arbitrary classifiers can also be alternatively
used, it is desired for classifiers to have the following two
properties. First, since the feature vectors tends to be high-
dimensional while the number of materials in the database
may be small, it is preferred the classifier uses a model with

a small number of parameters, or non-parametric like our
choice. Second, a capability of handling missing elements
in the feature vector is practically important, because the
measurement is sometimes missing due to specular reflec-
tion on the object surface, or becomes saturated with near-
distance reflectance.

For these reasons, we adopt a simple nearest neighbor
classifier, which assesses the Euclidean distance (`2 norm).
To deal with the missing or uninformative saturated ob-
servations, we remove such elements in the feature vector
when evaluating the distance. The distance ξp between the
feature vector v of the target object and the training vector
vp of the object p in the dataset can be computed as

ξp =
1

N

nm∑
k=0

{
0 vk = N/A
(vk − vpk)2 otherwise,

(12)

where N is the number of valid elements, and vk and vpk are
k-th element of vectors v and vp, respectively. Using this
distance, we can classify the object by searching the nearest
class p̂ as

p̂ = argmin
p

ξp.

Throughout the evaluation in this paper, we use this simple
nearest neighbor classifier to assess the effectiveness of the
depth distortion features for material classification.

5. Experiments
We evaluate the proposed method by a ToF camera and

a linear translation stage system as shown in Fig. 3. We
use Microsoft Kinect v2 for a ToF camera, which has three
modulation frequencies (n = 3), and a OptoSigma’s trans-
lation stage (SGSP46-800). As the official Kinect API does
not support an access to depth measurements of each fre-
quency, we have slightly altered an open-source software
libfreenect2 to obtain such data1.

First, we measure the depth distortion data for many ma-
terials and examine their differences across materials. The
target object is placed on a linear translation stage changing
the depth from 600 mm to 1250 mm (m = 2600), and is
measured several times with changing the orientation of the
object. The ground truth depth is obtained from the position
of the translation stage, which is only used this test. Figure 4
shows the depth distortion of three materials; white acrylic
board, polystyrene board, and opal diffusion glass. They
are visually similar object (white, planer, and no texture)
hence appearance based methods have difficulty to distin-
guish these objects. On the other hand, depth distortions of
ToF observations show significant difference across materi-
als and retain consistency over measurement sessions.

1The source code is publicly available on our website.
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Figure 3: Experimental setup. We use Kinect as a ToF cam-
era, and the target object is placed on a linear translation
stage.

Using this depth distortion data, we assess the accuracy
of material classification by the nearest neighbor classifier.
The dataset consists of 26 materials including metal, wood,
plastic, fabric, and so on, with 13 orientations for each
material to enable the classifier to deal with target objects
with arbitrary surface orientations. We evaluate the classi-
fication accuracy using three different features: Frequency-
dependent distortion, depth-dependent distortion, and both
of them. Using the feature with only frequency-dependent
distortion (n = 3 and m = 1), the accuracy is 57.4%. This
low accuracy is due to the limited availability of the number
of frequency channels. Using only depth-dependent distor-
tions (n = 1, m = 2600, and using Eq. (11)), the accuracy
is improved to 81.6%2. Finally, with both of frequency- and
depth-dependent distortions (n = 3 and m = 2600), the
accuracy is further improved to 90.5%. The confusion ma-
trix is shown in Fig. 5. While many materials are correctly
classified, some materials are miss-classified. For exam-
ple, plaster and paper, or expanded and rigid polyvinyl chlo-
rides have similar impulse responses due to similar scatter-
ing properties; therefore they are sometimes miss-classified.

Feature variations w.r.t surface orientation When the
surface orientation of the target object varies, the time-
domain impulse response may also vary. To confirm the
effect of surface orientations, we measure a wooden board
by changing the orientation and assess the variation of fea-
ture vectors with respect to varying orientations. Figure 6
shows the variation of the nearest distance from the wood
class in the feature space along with the surface orientation
of the target object. The red line indicates the upper-bound
distance from the wood class, under which the query fea-
ture vector is correctly classified as “wood.” In other words,
once the distance from the wood class to the query feature
goes beyond this upper-bound distance, it will be misclassi-
fied. The feature is stable under around 70 degrees, which
indicate that the depth distortion feature is reliable for the

2Details and confusion matrices are shown in the supplementary.

confronting surface in practice but may break down for a
steep-slanted surface, e.g., near the edges of a round-shape
object.

Feature variations w.r.t. shape When the shape of the
target object varies, the time domain impulse response may
also vary, especially for a concave shape where significant
inter-reflections occur. To confirm the effect of the shape of
the object, we set up a scene of folded cardboard that can
change the opening angle. We measure the folding edge
area of the cardboard with changing the opening angle from
the small angle (closed) via 180 degrees (flat) to large angle
(protruded) as shown in Fig. 7(a). The distances of feature
vectors between the folded and flat cardboards are plotted in
the blue line in Fig. 7(b). The red line represents the upper-
bound of the flat cardboard class, under which the target is
regarded a flat cardboard, and a moderate robustness against
the shape variation is shown.

Material segmentation Our method can be applied in a
pixel-wise manner to achieve material-based segmentation.
Figure 8 shows a couple of example of material segmen-
tation. For the scene shown in Fig. 8(a), all objects in the
scene are white and the material classes are not obvious in
the RGB image. With our method, the material is classified
for each pixel as shown in Fig. 8(b). For this application, we
use only frequency-dependent variations without the depth-
dependent ones, i.e., m = 1, because the alignment of the
pixels may become hard when the geometric relationship
between the camera and scene varies. As a result, the re-
sult appears to be a little bit noisy, but it still shows faithful
classification performance. For this experiment, we used a
reduced database containing only four materials as the di-
mensionality of the feature vector is limited. Figure 8(c)
shows another scene where wallets made of genuine and
fake leather are placed, and they are correctly classified as
shown in Fig. 8(d).

Depth correction Once materials are classified, the dis-
torted depths can be corrected for recovering an accurate
3D shape using the material database that contains the sam-
ples of distortions for all materials. An example of the depth
correction is shown in Fig. 1. Because mayonnaise has sig-
nificant subsurface scattering, the measured depth of may-
onnaise region is strongly distorted than that of the label as
shown in Fig. 1(b). Figure 1(c) shows our result of material
segmentation. Again, we do not change the depth of the tar-
get; therefore, only frequency-dependent variation is used
(m = 1) with a limited database. Although some artifacts
are observable because of the limited amount of measure-
ment and steep surface orientations, mayonnaise and the la-
bel regions are largely well separated. Using the segmenta-
tion result and depth distortion database, a faithful 3D shape



(a) White acrylic board (b) White polystyrene board (c) White diffusion glass

Figure 4: Measured depth distortions using Kinect for three objects. The ground truth depth is obtained via a linear translation
stage. The top row shows photographs of the target objects. Measurements of the second and third rows are different in terms
of surface orientation. Depth distortion of each frequency varies along with the actual depth and material. Depth distortion is
similar for the same material regardless of the surface orientation, but largely different in different materials. This frequency-
and depth-dependent depth distortion is our key observation for material classification.
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Figure 5: Confusion matrix. Red indicates the higher value
and it appears on the diagonal. Overall accuracy is 90.5%.

of the mayonnaise bottle is recovered as shown in Fig. 1(d).
Compared to the original shape, the depth discontinuity be-
tween mayonnaise and the label regions is significantly re-
duced.

Real-time classification system We develop a near real-
time material classification system, which can recognize the
target material category by a hand-held ToF camera. Using

Surface normal orientation [degree]

D
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e

Figure 6: Feature vector variation over surface orientation.
We change the orientation of the target object, and plot the
distance of features along with the orientation. The feature
is stable under around 70 degrees, and shows large devia-
tion at steep-slant orientation. Red line indicates the upper-
bound distance for the correct classification.

the partial matching described in Eq. (12), our method out-
puts the result in near real-time even when observations at
only a small number of depth locations m is available. By
increasing the variation of depths by moving a target object
or the camera (increasing m), the classification accuracy is
gradually improved because richer information can be fed
to the classifier.3

3A video is included in a supplementary material. Please refer to the
video for this demonstration.



(a) Scenes of the folded cardboard
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(b) Variation of feature distance between flat and folded card-
boards

Figure 7: Shape dependency of the feature vector. We mea-
sure a cardboard with folding from 60 to 240 degrees. By
folding cardboard less than 180 degrees, the scene exhibits
strong inter-reflections.
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(a) The scene of white utensils (b) Classification result

Fake leather
Leather Copper
Flock paper

Leather Fake leather

Copper

Flock paper

(c) The scene of wallets (d) Classification result

Figure 8: Material segmentation results. (a) All utensils are
white hence it is difficult to classify only with an RGB im-
age. (b) The result of our material classification. Although
there are some estimation error because of the pixel-wise
process and only one depth variation, the scene is much in-
terpretable than the RGB image. (c) Wallets made of gen-
uine and fake leather and copper coins are placed in the
scene. (d) Material segmentation result.

Thickness classification Depth distortion is also useful
for thickness estimation of the optically thin material. For

example, white acrylic boards are optically thin so that the
impulse response varies along with its physical thickness.
The thickness of the white acrylic board can therefore be
classified as shown at the near bottom part of Fig. 5. Cur-
rently, our method is limited to classification of different
thicknesses, but we are interested in turning the problem
into a regression problem for estimating the thickness.

6. Discussions

We have developed a material classification using an off-
the-shelf ToF camera. We show that the measured depth us-
ing a ToF camera is distorted according to the time domain
impulse response of materials, and the distortion varies
along with the modulation frequency and the distance be-
tween the object and the camera. We use the ToF depth
distortion as a cue for material classification, and developed
a classification method.

Our method is based on a difference of time domain im-
pulse response among materials, hence we assume the im-
pulse response is the same for the same material. However,
it may not be always true because the shape, color, and
geometry may cause varying impulse response. We have
assessed the variation of the designed feature over varying
shape and surface orientation and have shown the robust-
ness of the developed feature up to a limitation on the vari-
ations. Related to this problem, optically thin object’s im-
pulse response also varies along with the object’s thickness.
On one hand, this allows us to classify thickness of the tar-
get object, but on the other hand, it indicates that a database
with varying thicknesses is needed for correctly classify-
ing materials of an object that may have arbitrary thickness.
This is one of the current limitations of our method. Using
simulation such as Jarabo et al.’s renderer [16], a very large
database that includes all the materials and variations could
be obtained. At this point, it looks non-straightforward to
prepare materials’ physical properties and measure the illu-
mination bias bω using an oscilloscope; however, it is a new
potential direction.

Another limitation is that the depth distortion mea-
sures, especially the depth-dependent distortion, is camera-
dependent because the bias of illumination wave may be
different across different devices. The development of the
inter-device feature or transferring the database for a differ-
ent camera is an important future work.

The amplitude of ToF observation also varies over dif-
ferent frequencies and depths, hence it can be also used for
analyzing the scene. We did not use this cue in this paper,
but we are interested in investigating this respect for further
improving the classification accuracy.
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