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Abstract
Radiometric image analysis methods heavily rely on re-

flectance models. Due to the complexity of real materials,
methods based on simple models such as the Lambertian
model often suffer from inaccuracy. On the other hand,
more advanced models such as the Cook-Torrance model
severely complicate the analysis problem. We tackle this
dilemma by focusing on the low-frequency component of the
reflectance. We propose a compact biquadratic reflectance
model to represent the reflectance of a broad class of ma-
terials precisely in the low-frequency domain. We validate
our model by fitting to both existing parametric models and
non-parametric measured data, and show that our model
outperforms existing parametric diffuse models. We show
applications of reflectometry using general diffuse surfaces
and photometric stereo for general isotropic materials. Ex-
perimental results show the effectiveness of our biquadratic
model and its usefulness in radiometric image analysis.

1. Introduction
General surface reflectance is described by 4-D bidi-

rectional reflectance distribution functions (BRDFs). Ra-
diometric image analysis methods, including reflectome-
try and photometric shape analysis, rely on accurate mod-
eling of reflectance. There has been a tremendous effort
to build parametric BRDF models for realistic rendering
(e.g., [9, 36, 18, 3]). While these models are successful in
graphics-rendering applications, they are seldom used in in-
verse problems in radiometric image analysis, because they
often lead to highly nonlinear optimization problems. For
the sake of computational simplicity and stability, the Lam-
bertian model is still most widely used for inverse problems
in spite of its limited accuracy in modeling real-world ma-
terials. To make the radiometric image analysis methods
more accurate and reliable, a general yet simple parametric
BRDF model is desired.

One of the key challenges in developing an analytic
BRDF model is accurately modeling specular reflection-
s that exhibit high-frequency variations. Modeling high-
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frequency specular reflections is crucial for photo-realistic
rendering in computer graphics. However, it is seldom nec-
essary for inverse problems in computer vision like pho-
tometric stereo. Instead, the low-frequency componen-
t is more actively used in radiometric analysis, because its
dense observation provides a reliable source for the analy-
sis problem1. Motivated by this observation, we develop a
new analytic reflectance model for radiometric image anal-
ysis. This model relies on a biquadratic representation for
accurately modeling the low-frequency component while
neglecting the high-frequency component. Although it ex-
cludes strong specularities including specular spikes, it can
represent broad and smooth specular lobes as well as the
diffuse component.

Our biquadratic representation uses a factorized form of
the bivariate BRDF model [29], i.e., the product of half- and
difference-angle terms as ρ(θh, θd) ' ρ1(θh)ρ2(θd). We
use a quadratic function for each term to achieve a com-
pact parameterization. This representation is well suited
for the low-frequency component of isotropic BRDFs as
we will see in the experimental results, and it is more pre-
cise than the Lambertian model, existing parametric models
with general diffuse terms [18, 3] and specular terms [9, 36].
In addition, because of its compactness, model estimation
becomes tractable for inverse problems in radiometric im-
age analysis. As applications of the proposed model, we
show its usages in reflectometry for general diffuse surfaces
and photometric stereo for general isotropic materials.

2. Related Works
Various parametric BRDF models have been devel-

oped over the decades. These can be categorized into
physically-based and empirical models. The former group
includes microfacet-based models, such as the Torrance-
Sparrow [35] and Cook-Torrance [9] models for specular
surfaces, and the Oren-Nayar model [25] for diffuse sur-
faces. On the other hand, empirical models, such as the
Phone [26], Blinn-Phong [4], and Lafortune models [18],
use generic functions to express BRDFs. Some models

1For example, strong specular spikes (high-frequency) are observed on-
ly when the surface normal coincides with the bisector of viewing and
lighting directions.



bridge these two categories by partly using physically moti-
vated terms, e.g., the Ward [36] and Ashikhmin models [3].
An experimental evaluation of various models can be found
in [23]. Generally, parametric models are compact and easy
to use for forward problems, but they are often designed for
a limited class of materials.

A BRDF can also be naturally represented in a non-
parametric form by a 4-D discrete table of densely mea-
sured data. This can be simplified to a 3-D table if the
materials are isotropic [11, 20, 21]. It can be further re-
duced to a 2-D table for a wide range of isotropic re-
flectances [27, 2, 28]. Although high-quality rendering can
be achieved using measured data, the non-parametric for-
m is generally unsuitable for inverse problems because its
large number of parameters complicate the problem. There
are recent efforts that efficiently represent the BRDFs us-
ing non-parametric [40], semi-parametric [7], or paramet-
ric [24] forms to achieve high modeling accuracy by em-
ploying different basis functions. Our goal shares a simi-
lar spirit, but we focus on modeling the low-frequency re-
flectance using a simpler parametric form with an emphasis
on radiometric image analysis.

Radiometric image analysis. Radiometric image analy-
sis seeks to recover scene properties, such as reflectance or
shape, from recorded scene radiance. Here we briefly re-
view related works in reflectometry and photometric stereo.

Most of the works on reflectometry are based on para-
metric reflectance models, such as [39, 5, 14], with ex-
ceptions of [27, 28], which assume non-parametric bivari-
ate BRDFs and adopt a discrete table representation. All
these methods focus on reflectance estimation assuming a
known shape with different input: multiple input images
under a moving point light source [39, 14], a single input
image with known [5, 27] or unknown environment illu-
mination [28]. A successful reflectometry requires both an
accurate reflectance model and a reliable model estimation
method.

In the shape estimation context, early photometric stere-
o works [37, 32] are based on the Lambertian reflectance
model. To handle real surfaces that are often non-
Lambertian, some algorithms attempt to discard the non-
Lambertian reflectance as outliers [38]. The others em-
ploy parametric reflectance models, such as the Torrance-
Sparrow model [12], the Ward model [8, 13], and other
multi-lobe models [33].

There are more recent approaches that attempt to solve
the photometric stereo problem with reflectance symme-
tries, such as isotropy and reciprocity [1, 2, 34, 6], with-
out using a strong assumption on reflectance. Photomet-
ric stereo can also be applied to surfaces with general re-
flectance by using thousands of images [16], or consider-
ing some consensus properties [15]. We study photometric
stereo based on our biquadratic reflectance model. Since
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Figure 1. The definitions of θh and θd.

our reflectance model is compact yet accurate for many re-
al materials, our method requires simple data capturing and
optimization.

3. Biquadratic Reflectance Model
We denote n as a unit surface normal, h as the bisector

of lighting direction l and viewing direction v, i.e., h = (l+
v)/‖l + v‖. Following [29], we use θh to denote the angle
between n and h, and θd for the angle between l (or v) and
h as illustrated in Fig. 1. Hence, the following relationships
hold: nTh = cos θh and lTh = cos θd.

Our reflectance model is based on the bivariate BRDF
model [29], which shows that most of the isotropic BRDFs
can be represented as a bivariate function ρ(θh, θd). This
representation is evaluated by [27] with a large number of
measured BRDFs [21] in the development of passive reflec-
tometry. It is further discussed in [29] that any isotropic
BRDF based on microfacet theory should consist of a uni-
variate function of θh, and its Fresnel term should be a u-
nivariate function of θd. As shown by [3], the masking and
shadowing terms in a microfacet-based BRDF model vary
smoothly and are actually close to constant. These anal-
yses motivate us to further simplify the bivariate function
ρ(θh, θd) as a factorized form ρ1(θh)ρ2(θd). Similar sim-
plification has been used in [19] to assist material capturing
and editing.

To obtain a compact parametric model suitable for in-
verse problems, we make a further simplification by rep-
resenting the factorized terms as quadratic functions of
cos θh and cos θd. As a result, our BRDF model becomes
a biquadratic function. As we will see later, the pro-
posed biquadratic model can represent a wide class of low-
frequency BRDFs and has a computationally tractable form
in radiometric image analysis.

Based on these discussions, we define a biquadratic re-
flectance model for isotropic low-frequency reflectance as
the following:

ρ(θh, θd) 'ρ1(θh)ρ2(θd) = ρ̃1(nTh)ρ̃2(lTh)

=
(
A1(nTh)2 +B1(nTh) + C1

)(
A2(lTh)2 +B2(lTh) + C2

)
.

(1)
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Figure 2. BRDF fitting errors of our model to the Cook-Torrance
model. The columns vary with Tlow and the rows vary with m in
the Cook-Torrance model. Some rendered images are displayed
on the left side for reference.

In practice, to simplify model fitting, the biquadratic for-
m of Eq. (1) can be further relaxed as

ρ̃(x, y) =Ax2y2 +Bx2y + Cx2 +Dxy2 + Exy+

Fx+Gy2 +Hy + I,
(2)

where x = nTh, y = lTh are defined for notation simplic-
ity. There are 9 parameters in total, and we denote them in
a vector form as x = [A,B, · · · , I]T ∈ R9×1. Note that
the conversion from Eq. (1) to Eq. (2) is unique, but the
other direction is not, and Eq. (2) may not always have the
product form of Eq. (1). Eq. (2) is a linear function of its
parameters A to I , while Eq. (1) is a bilinear function of
these parameters. Hence, the relaxed model is much easier
to fit.

3.1. Model Validation
Intuitively, our model can accurately represent the low-

frequency part of conventional dichromatic reflectance
models [31], which represent reflectances as a summation
of Lambertian diffuse and specular terms. Since the specu-
lar term is mostly concentrated in the high-frequency part,
the low-frequency Lambertian term can be well represented
by our model with A1 = B1 = A2 = B2 = 0. Our model
can also represent the low-frequency component of BRD-
F models that rely only on nTh, such as the Blinn-Phong
model [4]. The low-frequency part of these models can be
approximated by our model with A2 = B2 = 0.

In the following, we assess the modeling accuracy of
our biquadratic reflectance model by fitting existing para-
metric models and measured data. We use a simple in-
tensity thresholding to separate low-frequency and high-
frequency reflectances, since high-frequency (strong spec-
ular) reflectances generally show high intensity. We fur-
ther compare our biquadratic model with existing paramet-
ric models.
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Figure 3. BRDF fitting errors of our model to the 100 materials in
the MERL database. The columns vary with Tlow, and the rows
represent different BRDFs with indices ordered by the mean fitting
errors over columns. Some rendered images are displayed on the
left for reference, with reordered BRDF indices (the numbers in
brackets are their original indices in the database) aside.

Fitting to parametric BRDFs. The Cook-Torrance mod-
el [9] is widely used to represent surface reflectance. It con-
sists of a Lambertian diffuse and a specular term. The spec-
ular component is modeled as a multiplication of microfacet
distribution D, the Fresnel term F and the geometrical at-
tenuation term G. The microfacet distribution D is repre-
sented as

D =
1

4m2(nTh)4
exp

(
1

m2

(
1− 1

(nTh)2

))
, (3)

where m indicates the surface roughness. D is clearly a
function of θh. F is often simplified by the Schlick’s ap-
proximation [30, 3], denoted as

F = ρs + (1− ρs)(1− lTh)5, (4)

where ρs is a constant. Hence, F is a function of θd. Al-
though the term G is relatively complicated, it varies s-
moothly and is close to constant over a large range of exitant
angles as evaluated in [22, 3]. Therefore, ρ1(θh)ρ2(θd) is
a good approximation for the Cook-Torrance model. Oth-
er models based on the microfacet theory, such as the
Ward [36] model, have similar expressions.

For an experimental validation, we fit our biquadratic
model to synthetic data generated by the Cook-Torrance
model with varying surface roughness. The relative strength
of diffuse and specular components is fixed to 1. We fix the
viewing direction at (0, 0, 1) and sample 1620 normal direc-
tions from the visible hemisphere by uniformly choosing 36
longitudes and 45 altitudes. We then randomly sample 100
light directions to calculate the reflected radiance. For each
normal direction under varying lightings, we sort the radi-
ance intensities in an increasing order and select only those
non-shadowed samples that are ranked below a predefined



percentage Tlow. We then fit our biquadratic model to these
selected samples in a least-squares manner. Specifically, we
fit Eq. (2) by a linear least-squares and use its results as ini-
tial values to fit Eq. (1) in an iterative manner. At each iter-
ation, we fix the parameters of one quadratic function and
optimize the other parameters by a linear least-squares. It
usually takes no more than 10 iterations to converge. This
process is repeated with different surface roughness m and
different Tlow.

The color encoded mean absolute errors (MAE) of the
fitting are summarized in Fig. 2 in a matrix form with
varying m and Tlow. Note that reflectance with a large
roughness value has a broad specular lobe, which is mixed
with the Lambertian diffuse reflectance to form the low-
frequency reflectance. From the region within the light blue
rectangle in Fig. 2, we conclude that our model well fits the
low-frequency reflectance of the Cook-Torrance model with
different roughnesses.

Fitting to measured data. We also assess our biquadratic
model by fitting to synthetic data generated from measured
MERL BRDF database [21]. The input samples are gener-
ated in the same way as the previous experiment, except that
we use the measured BRDFs instead of the Cook-Torrance
model. The MAE values are shown in Fig. 3. Note that the
rows indicate different BRDFs in the database now. Sim-
ilar to Fig. 2, our model fits well to the low-frequency re-
flectance of different materials, and our model has smaller
fitting errors for materials with broader specular lobes.

3.2. Comparison with Other Parametric Models
Models with general diffuse terms. There are existing
parametric models with general diffuse terms, such as the
Lafortune and the Ashikhmin2 models.

In the Lafortune model [18], a general rotationally sym-
metric diffuse component ρL is written as

ρL = Cd

(
nT l

)k (
nTv

)k
, (5)

where Cd and k are model parameters. The general diffuse
term of Ashikhmin model [3] ρA is defined as

ρA = R

(
1−

(
1− nT l

2

)5
)(

1−
(

1− nTv

2

)5
)
, (6)

where R is the model parameter.

Models with specular terms. Several parametric model-
s assume a Lambertian diffuse term and use a microfacet-
based specular component, such as the Cook-Torrance and
Ward models. These models can be represented as

ρS =
kd
π

+ ksS(n, l,v,m), (7)

2In this paper, we only consider the general diffuse terms of these two
models.

where kd and ks are model parameters representing the
strength of diffuse and specular terms respectively; S is a
nonlinear function with m as another model parameter. In
the Cook-Torrance model, m is encoded in theD term in E-
q. (3) and the Ward model has a similar expression.

Fitting comparison. We again use the MERL BRDF
database for evaluation by setting the threshold Tlow =
25% to extract the low-frequency reflectance. Fitting E-
q. (6) is straightforward. For fitting Eq. (5), we take log-
arithm of both sides of the equation and estimate the log-
parameters by a linear least-squares. For fitting Eq. (7), we
adopt the similar strategies as [23], and use the Matlab func-
tion “lsqnonlin” to solve the nonlinear optimization. The
fitting errors are shown in Fig. 4, where “biquadratic (re-
lax.)” and “biquadratic (iter.)” indicate the relaxed model
in Eq. (2) and the original model in Eq. (1), respectively.

Compare to existing general diffuse terms, our model has
a smaller fitting error than the Lafortune and Ashikhmin
models. Though with specular components included, the
Cook-Torrance and Ward models cannot outperform our
model in fitting the low-frequency reflectance. Besides, our
model has a simpler analytic form, which makes it easier
to use in inverse problems. The errors of “biquadratic (re-
lax.)” and “biquadratic (iter.)” are very similar. It suggests
the relaxed model is a good replacement for the original
biquadratic model when computational efficiency is impor-
tant.

3.3. Why Biquadratic?
ρ̃1(x) and ρ̃2(y) might also be represented by polynomi-

als of any orders, e.g., linear or cubic. We choose to repre-
sent both of them by quadratic functions to achieve a good
trade-off between modeling accuracy and model complex-
ity. We compare the accuracy of bilinear, biquadratic, and
bicubic models in Fig. 4. The bilinear model is less accurate
than the Lafortune model. On the other hand, the bicubic
model has the smallest fitting error, because its higher de-
grees of freedom. However, as we will see in the photomet-
ric stereo application, its cubic function of n complicates
the normal estimation. Therefore, we choose the biquadrat-
ic model.

4. Application to Reflectometry
Although our biquadratic model mainly intends to model

the low-frequency reflectance, it can also be used as an em-
pirical reflectance model for materials without significant
specular spikes. With our model in Eq. (2), reflectometry
becomes a simple linear problem Ax = i, where i records
radiance values. For each observation, we can calculate the
(x, y) terms (a 9-D row vector) according to Eq. (2) from
n, l, and v when the shape and lighting are all calibrated.
From p samples (p > 9) that are linearly independent, the
matrix A ∈ Rp×9 and observations i ∈ Rp×1 are obtained.
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Figure 4. BRDF fitting errors. The Y-axis shows the MAE values. The X-axis shows BRDF indices ordered by the fitting errors of
“biquadratic (relax.)” for visualization purpose. The mean/median MAEs (×10−4) over the BRDF index are shown in the legend.

The model parameters x can be determined by simply solv-
ing the linear system as x = (ATA)−1AT i. For a curved
surface with a single material, a single image under a point
light source provides sufficient information for reflectome-
try.

To verify the method, we pick some materials (e.g.,
BLUE-RUBBER, DARK-RED-PAINT, YELLOW-PAINT, etc.),
which do not show strong specularities from the MERL
BRDF database. We synthesize a single image of a sphere
under a point light source as input and fit our model to it.
All the tested materials show the similar results with an
average MAE about 8 × 10−4. Here we show the BLUE-
RUBBER example in Fig. 5. The left most is the original
input image. The others are images rendered according to
the reflectance model estimated from the input image. We
also show the comparison with the bivariate model [27] and
the Lambertian model. The bivariate model is generated
similarly as [27] by taking one slice of the 3-D discrete
BRDF table (ρ(θh, θd, φd)) and averaging over φd (the rota-
tion of difference-angle). Although our model performs s-
lightly worse than the bivariate model, we have significantly
fewer parameters. In contrast, the simple Lambertian mod-
el generates the largest error. Generally, our model bears
relatively larger errors when high-frequency reflectance ap-
pears (e.g., center of the sphere), since it only models low-
frequency reflectance.

We also use real data to evaluate our method. The input
image is captured from a ping pong ball. For visual valida-
tion, we show a sphere rendered according to the biquadrat-
ic model, the Lafortune model and the Lambertian model
estimated from this input image in the lower part of Fig. 5.
The result here is consistent with the BRDF fitting results
in Fig. 4. Our model can better describe the low-frequency
reflectance than the Lafortune and Lambertian models.

Rendering results
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Figure 5. A synthetic and a real-world results of reflectometry. Be-
low the rendered (captured) spheres we show the difference maps
w.r.t. the ground truth and their MAEs.

5. Application to Photometric Stereo
In this section, we apply our biquadratic reflectance

model to photometric stereo to recover surface normals
from images captured from a fixed camera under varying
lightings. We assume an orthographic camera and direc-
tional lightings. The camera-centered coordinate system is
chosen such that v = (0, 0, 1)T . We fit our biquadratic
reflectance model at each pixel independently, thus this ap-
proach can handle spatially varying BRDFs.

5.1. Algorithm Detail
From the photometric stereo images, we observe multi-

ple radiance intensities at each pixel. For each pixel, we first
use a very small intensity threshold to skip shadows. And



Ground truth         Biquadratic              Bicubic Cook-Torrance  Ward               Lambert (low)        Lafortune Lambert (all)  

2.65 3.30                       3.95 3.99                      4.04                     5.61                     15.94  

45

0

3.11 4.01                      5.18                       5.23                5.27                 6.77                  22.00

45

0

Figure 6. Photometric stereo with synthetic data. One of the input images is given under the ground truth normal map. Below other normal
maps are angular difference maps w.r.t. the ground truth. The numbers on the difference maps show mean angular errors (degree) of normal
estimates.

then we sort remaining observations in increasing order and
only keep those ranked below a percentage Tlow, which is
empirically determined within [20%, 40%]. We use ilow to
denote the concatenated vector of these remaining obser-
vations and stack their corresponding lighting directions to
from a matrix Llow. We then obtain the following equation:

ilow = ρ̄(n,Llow) ◦ (nTLlow), (8)

where ‘◦’ indicates element-wise multiplication. ρ̄(·, ·) en-
codes the reflectance parameter x in the same manner as
ρ̃(·, ·) in Eq. (2), but operates on each n and l. We use the re-
laxed biquadratic model of Eq. (2) for better computational
efficiency. The surface normal n and the BRDF parameters
x can be determined by iteratively optimizing the following
objective function:

(n∗,x∗) = argmin
n,x

‖ρ̄(n,Llow) ◦ (nTLlow)− ilow‖2. (9)

At each iteration, we first fix the normal direction n and
refine x by a linear least-squares. We then substitute x and
n to determine ρ̄(·, ·). Once ρ̄(·, ·) is calculated, we up-
date n again by a linear least-squares. To initialize this it-
erative optimization, we first apply Lambertian photometric
stereo [37] with ilow and Llow to estimate an initial normal.
The iterative optimization stops when the residual of Eq. (9)
does not change. In our implementation, we stop it when the
change becomes less than 10−7.

This same approach can be applied for other analytic
BRDF models, such as the Lafortune, Cook-Torrance and
Ward models. However, when it is used, the estimation of
their BRDF parameters by fixing n becomes highly nonlin-
ear. Similarly, though we might use higher-order polyno-
mials such as cubic functions to represent ρ̃1(x) and ρ̃2(y),
high-order polynomials are prone to different instabilities
(numerical errors, Runge’s phenomenon [10], etc.). Hence,
the biquadratic representation is a good trade-off between
model complexity and accuracy.

5.2. Experiments
Spatially varying BRDFs. We generate synthetic images
with spatially varying BRDFs to quantitatively verify our

photometric stereo method. We mix ALUM-BRONZE and
CHERRY-235 from the MERL BRDF database on a BUN-
NY model, and render 100 images as input. We still set
Tlow = 25% for this synthetic data. We use the same solu-
tion method as Sec. 5.1, and replace ρ̄(·, ·) as bicubic, Lafor-
tune, Cook-Torrance and Ward models respectively to make
a comparison. The estimated normal maps3 and their angu-
lar errors are shown in Fig. 6.

The traditional Lambertian photometric stereo with all
images (“Lambert (all)”) [37] fails on those materials with
complicated reflectances (e.g., the texture boundaries on
BUNNY is clearly visible in the error map). By only fo-
cusing on the low-frequency reflectance, photometric stereo
can work reasonably well on general reflectance even with
the Lambertian model (“Lambert (low)”). Further by fitting
the low-frequency reflectance with our biquadratic model,
the estimated normals become even more accurate. Com-
pared with other BRDF models, the mean error from the
bicubic case is larger than the biquadratic case due to the
high-order polynomial fitting, and the errors from the Cook-
Torrance, Ward and Lafortune models are larger than our
model partly due to their lower modeling ability for low-
frequency reflectance. Besides, the nonlinear reflectance
might cause the iterative optimization performs poor, which
makes the Lafortune case has a larger error than the “Lam-
bert (low)” case.

Real-world data. We show the results of real-world data
in Fig. 7. For an easy reference, we refer to these examples
as (from top to bottom row) GOURD1 (102), GOURD2 (98),
APPLE (112), POST (91) and TEAPOT (73), with the number
of input images in the bracket. The first three datasets are
recorded by Alldrin et al. [2]. Others are captured by our-
selves with a Sony XCD-X710CR camera. We do not care-
fully control exposure to avoid saturation, since our method
can naturally skip undesired strong specular and saturation
regions by setting Tlow. These objects include various chal-
lenging materials for photometric stereo, such as porcelain

3x, y, z components of surface normal are linearly mapped to the
R,G,B channels.



and shiny plastic.
In Fig. 7, the left column shows one of the input im-

ages to the photometric stereo algorithm and a reference
image (not used in calculation) of the same object under nat-
ural lighting and a new view point4. The middle and right
columns show the estimated surface normal and integrated
surfaces using our method and the Lambertian photometric
stereo. The integrated surfaces are produced by the shapelet
surface reconstruction method [17]. The recovered surfaces
are aligned to the reference views for making qualitative e-
valuation, and our reconstruction agrees well with them.

6. Conclusion
We present a biquadratic reflectance model for low-

frequency reflectance of isotropic surfaces. Our model can
represent a broad class of real materials at high precision
while retaining sufficient simplicity for radiometric image
analysis. Extensive experiments using both synthetic and
measured data demonstrate its effectiveness in modeling
low-frequency BRDF components. We further show that
it can be used for reflectometry to capture general diffuse
reflectance. We also propose a novel photometric stereo so-
lution to general isotropic materials using the proposed re-
flectance model. These applications show the applicability
of our model in radiometric image analysis.

The current model is limited to isotropic materials. We
also hope to analyze the characteristics of the low-frequency
component of anisotropic reflectance and extend our bi-
quadratic model to a wider variety of reflectances. At the
same time, currently the low-frequency reflectance is iden-
tified by a simple intensity threshold. How to detect it in a
more principled manner is also left as our future work.
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